电阻开关存储器的进展:通过透射电镜观察和分析全面了解ECM机制

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Woonbae Sohn, Hyerim Kim, Jung Hun Lee, Young-Seok Shim, Cheon Woo Moon and Hyojung Kim
{"title":"电阻开关存储器的进展:通过透射电镜观察和分析全面了解ECM机制","authors":"Woonbae Sohn, Hyerim Kim, Jung Hun Lee, Young-Seok Shim, Cheon Woo Moon and Hyojung Kim","doi":"10.1039/D5MA00337G","DOIUrl":null,"url":null,"abstract":"<p >The information age requires improved devices, especially performance and output, due to data processing, power consumption, flexibility, multifunctionality, cost efficiency, and fabrication technologies. Examining resistive switching properties indicated that the conductive filament mechanism and the movement of ions from dielectric layers or electrodes play a crucial role in facilitating resistive switching. Despite extensive studies employing various materials to clarify the resistance switching in memory devices, the fundamental mechanisms still need to be more adequately understood. In ECM, metal cations move from a top electrode that shows electrochemical activity, creating conductive metal filaments. The complex nature of ion migration at the nanoscale and the associated redox reaction in resistive switching require a thorough understanding through transmission electron microscopy (TEM). <em>In situ</em> TEM enables the real-time observation of resistive switching dynamics, highlighting the limitations of static <em>ex situ</em> TEM. The observation of filament formation <em>via</em> TEM facilitates atomic-resolution investigations into the real-time evolution of nanostructures within resistive switching memory systems. Understanding resistive switching behavior may improve the performance and reliability of memory devices. This assessment can be gained from applying electrodes featuring resistive switching material systems for ECM, which aim to advance the development of universal nonvolatile memory devices.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 13","pages":" 4158-4173"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00337g?page=search","citationCount":"0","resultStr":"{\"title\":\"Advances in resistive switching memory: comprehensive insights into ECM mechanisms through TEM observations and analysis\",\"authors\":\"Woonbae Sohn, Hyerim Kim, Jung Hun Lee, Young-Seok Shim, Cheon Woo Moon and Hyojung Kim\",\"doi\":\"10.1039/D5MA00337G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The information age requires improved devices, especially performance and output, due to data processing, power consumption, flexibility, multifunctionality, cost efficiency, and fabrication technologies. Examining resistive switching properties indicated that the conductive filament mechanism and the movement of ions from dielectric layers or electrodes play a crucial role in facilitating resistive switching. Despite extensive studies employing various materials to clarify the resistance switching in memory devices, the fundamental mechanisms still need to be more adequately understood. In ECM, metal cations move from a top electrode that shows electrochemical activity, creating conductive metal filaments. The complex nature of ion migration at the nanoscale and the associated redox reaction in resistive switching require a thorough understanding through transmission electron microscopy (TEM). <em>In situ</em> TEM enables the real-time observation of resistive switching dynamics, highlighting the limitations of static <em>ex situ</em> TEM. The observation of filament formation <em>via</em> TEM facilitates atomic-resolution investigations into the real-time evolution of nanostructures within resistive switching memory systems. Understanding resistive switching behavior may improve the performance and reliability of memory devices. This assessment can be gained from applying electrodes featuring resistive switching material systems for ECM, which aim to advance the development of universal nonvolatile memory devices.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 13\",\"pages\":\" 4158-4173\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00337g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00337g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00337g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于数据处理、功耗、灵活性、多功能性、成本效率和制造技术,信息时代需要改进设备,特别是性能和输出。对电阻开关性能的研究表明,导电丝的机制和离子从介电层或电极上的运动对电阻开关的促进起着至关重要的作用。尽管利用各种材料进行了广泛的研究,以阐明存储器件中的电阻开关,但其基本机制仍需要更充分地了解。在ECM中,金属阳离子从显示电化学活性的顶部电极移动,形成导电金属细丝。纳米级离子迁移的复杂性质以及电阻开关中相关的氧化还原反应需要通过透射电子显微镜(TEM)进行彻底的了解。原位瞬变电磁法能够实时观察电阻开关动力学,突出了静态非原位瞬变电磁法的局限性。通过透射电镜观察灯丝形成有助于在电阻开关存储系统中进行纳米结构实时演化的原子分辨率研究。了解电阻开关行为可以提高存储器件的性能和可靠性。这种评估可以通过将具有电阻开关材料系统的电极应用于ECM中获得,其目的是促进通用非易失性存储器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances in resistive switching memory: comprehensive insights into ECM mechanisms through TEM observations and analysis

Advances in resistive switching memory: comprehensive insights into ECM mechanisms through TEM observations and analysis

The information age requires improved devices, especially performance and output, due to data processing, power consumption, flexibility, multifunctionality, cost efficiency, and fabrication technologies. Examining resistive switching properties indicated that the conductive filament mechanism and the movement of ions from dielectric layers or electrodes play a crucial role in facilitating resistive switching. Despite extensive studies employing various materials to clarify the resistance switching in memory devices, the fundamental mechanisms still need to be more adequately understood. In ECM, metal cations move from a top electrode that shows electrochemical activity, creating conductive metal filaments. The complex nature of ion migration at the nanoscale and the associated redox reaction in resistive switching require a thorough understanding through transmission electron microscopy (TEM). In situ TEM enables the real-time observation of resistive switching dynamics, highlighting the limitations of static ex situ TEM. The observation of filament formation via TEM facilitates atomic-resolution investigations into the real-time evolution of nanostructures within resistive switching memory systems. Understanding resistive switching behavior may improve the performance and reliability of memory devices. This assessment can be gained from applying electrodes featuring resistive switching material systems for ECM, which aim to advance the development of universal nonvolatile memory devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信