$r$-最近环网络一致性算法的最优分析

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
V Sateeshkrishna Dhuli;Said Kouachi;Stefan Werner
{"title":"$r$-最近环网络一致性算法的最优分析","authors":"V Sateeshkrishna Dhuli;Said Kouachi;Stefan Werner","doi":"10.1109/LSP.2025.3578956","DOIUrl":null,"url":null,"abstract":"Analyzing consensus algorithms within the context of the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest ring networks is critical for understanding the efficiency and reliability of large-scale distributed networks. The special properties of the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest neighbor ring offer multiple communication paths, accelerate convergence, and improve the robustness of consensus algorithms. However, this increased connectivity also introduces significant complexity in evaluating the performance of consensus algorithms, since key metrics are typically defined in terms of Laplacian eigenvalues. Especially, estimating the largest eigenvalue of the Laplacian matrix remains a major challenge for the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest neighbor ring networks. We reformulate the maximization of Laplacian eigenvalue as a minimization of the Dirichlet kernel problem. Firstly, we prove that the first and last lobes of the Dirichlet kernel are the deepest using the shift approach. Next, we apply local smoothness analysis and integer rounding arguments to demonstrate that there is at least one discrete sample to achieve a global minimum in that lobe. This study presents a rigorous analysis to precisely locate and compute the largest eigenvalue, resulting in exact analysis for key performance metrics, including convergence time, first-order network coherence, second-order network coherence, and maximum communication delay, with reduced computational complexity. In addition, our findings illustrate the effect of <inline-formula><tex-math>$r$</tex-math></inline-formula> in improving the performance of consensus algorithms in large-scale networks.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2494-2498"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Analysis of Consensus Algorithms for $r$-Nearest Ring Networks\",\"authors\":\"V Sateeshkrishna Dhuli;Said Kouachi;Stefan Werner\",\"doi\":\"10.1109/LSP.2025.3578956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing consensus algorithms within the context of the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest ring networks is critical for understanding the efficiency and reliability of large-scale distributed networks. The special properties of the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest neighbor ring offer multiple communication paths, accelerate convergence, and improve the robustness of consensus algorithms. However, this increased connectivity also introduces significant complexity in evaluating the performance of consensus algorithms, since key metrics are typically defined in terms of Laplacian eigenvalues. Especially, estimating the largest eigenvalue of the Laplacian matrix remains a major challenge for the <inline-formula><tex-math>$r$</tex-math></inline-formula>-nearest neighbor ring networks. We reformulate the maximization of Laplacian eigenvalue as a minimization of the Dirichlet kernel problem. Firstly, we prove that the first and last lobes of the Dirichlet kernel are the deepest using the shift approach. Next, we apply local smoothness analysis and integer rounding arguments to demonstrate that there is at least one discrete sample to achieve a global minimum in that lobe. This study presents a rigorous analysis to precisely locate and compute the largest eigenvalue, resulting in exact analysis for key performance metrics, including convergence time, first-order network coherence, second-order network coherence, and maximum communication delay, with reduced computational complexity. In addition, our findings illustrate the effect of <inline-formula><tex-math>$r$</tex-math></inline-formula> in improving the performance of consensus algorithms in large-scale networks.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"2494-2498\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11032131/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11032131/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在r最近环网络的背景下分析共识算法对于理解大规模分布式网络的效率和可靠性至关重要。r最近邻环的特殊性质提供了多条通信路径,加快了收敛速度,提高了一致性算法的鲁棒性。然而,这种增加的连通性也给评估共识算法的性能带来了显著的复杂性,因为关键指标通常是根据拉普拉斯特征值定义的。特别是,估计拉普拉斯矩阵的最大特征值仍然是$r$近邻环网络的主要挑战。我们将拉普拉斯特征值的最大化问题重新表述为狄利克雷核问题的最小化问题。首先,我们利用移位方法证明了狄利克雷核的第一和最后叶是最深的。接下来,我们应用局部平滑分析和整数舍入参数来证明至少有一个离散样本可以在该叶中实现全局最小值。本研究提出了一种严格的分析方法来精确定位和计算最大特征值,从而精确分析关键性能指标,包括收敛时间、一阶网络相干性、二阶网络相干性和最大通信延迟,同时降低了计算复杂度。此外,我们的研究结果说明了$r$在提高大规模网络共识算法性能方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Analysis of Consensus Algorithms for $r$-Nearest Ring Networks
Analyzing consensus algorithms within the context of the $r$-nearest ring networks is critical for understanding the efficiency and reliability of large-scale distributed networks. The special properties of the $r$-nearest neighbor ring offer multiple communication paths, accelerate convergence, and improve the robustness of consensus algorithms. However, this increased connectivity also introduces significant complexity in evaluating the performance of consensus algorithms, since key metrics are typically defined in terms of Laplacian eigenvalues. Especially, estimating the largest eigenvalue of the Laplacian matrix remains a major challenge for the $r$-nearest neighbor ring networks. We reformulate the maximization of Laplacian eigenvalue as a minimization of the Dirichlet kernel problem. Firstly, we prove that the first and last lobes of the Dirichlet kernel are the deepest using the shift approach. Next, we apply local smoothness analysis and integer rounding arguments to demonstrate that there is at least one discrete sample to achieve a global minimum in that lobe. This study presents a rigorous analysis to precisely locate and compute the largest eigenvalue, resulting in exact analysis for key performance metrics, including convergence time, first-order network coherence, second-order network coherence, and maximum communication delay, with reduced computational complexity. In addition, our findings illustrate the effect of $r$ in improving the performance of consensus algorithms in large-scale networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信