{"title":"用于可穿戴12导联心电采集系统的0.6 v 9.38位6.9 k /s电容分流旁路窗口SAR ADC","authors":"Kangkang Sun;Jingjing Liu;Feng Yan;Yuan Ren;Ruihuang Wu;Bingjun Xiong;Zhipeng Li;Jian Guan","doi":"10.1109/TVLSI.2025.3559669","DOIUrl":null,"url":null,"abstract":"This article proposes a fully differential ten-bit energy-efficient successive approximation register (SAR) analog-to-digital converter (ADC) for wearable 12-lead electrocardiogram (ECG) acquisition system. The proposed ADC structure generates two bypass windows through capacitor splitting technique, which can skip unnecessary quantization steps. The judgment module of bypass windows only requires an <sc>XOR</small> gate. By introducing redundant capacitors to participate in quantization, the total capacitance value is reduced by half. The proposed SAR ADC is fabricated using a standard 180-nm CMOS process. The measurement results show that it can achieve an effective number of bits (ENOBs) of 9.38 bits and a spurious-free dynamic range (SFDR) of 76.71 dB with a supply voltage of 0.6 V at a sampling rate (<inline-formula> <tex-math>$\\text{F}_{\\mathrm {S}}$ </tex-math></inline-formula>) of 6.94 kS/s. The power consumption is 15.61 nW when subjected to a 1.17-<inline-formula> <tex-math>$\\text{V}_{\\mathrm {PP}}~3.45$ </tex-math></inline-formula>-kHz sinusoidal input, resulting in a figure of merit (FoM) of 3.38 fJ/conv.-step. The average power consumption for quantizing 12-lead ECG signals is approximately 12.66 nW, demonstrating the ability to achieve ultralow-power quantization of ECG signals.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"1838-1847"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.6-V 9.38-Bit 6.9-kS/s Capacitor-Splitting Bypass Window SAR ADC for Wearable 12-Lead ECG Acquisition Systems\",\"authors\":\"Kangkang Sun;Jingjing Liu;Feng Yan;Yuan Ren;Ruihuang Wu;Bingjun Xiong;Zhipeng Li;Jian Guan\",\"doi\":\"10.1109/TVLSI.2025.3559669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a fully differential ten-bit energy-efficient successive approximation register (SAR) analog-to-digital converter (ADC) for wearable 12-lead electrocardiogram (ECG) acquisition system. The proposed ADC structure generates two bypass windows through capacitor splitting technique, which can skip unnecessary quantization steps. The judgment module of bypass windows only requires an <sc>XOR</small> gate. By introducing redundant capacitors to participate in quantization, the total capacitance value is reduced by half. The proposed SAR ADC is fabricated using a standard 180-nm CMOS process. The measurement results show that it can achieve an effective number of bits (ENOBs) of 9.38 bits and a spurious-free dynamic range (SFDR) of 76.71 dB with a supply voltage of 0.6 V at a sampling rate (<inline-formula> <tex-math>$\\\\text{F}_{\\\\mathrm {S}}$ </tex-math></inline-formula>) of 6.94 kS/s. The power consumption is 15.61 nW when subjected to a 1.17-<inline-formula> <tex-math>$\\\\text{V}_{\\\\mathrm {PP}}~3.45$ </tex-math></inline-formula>-kHz sinusoidal input, resulting in a figure of merit (FoM) of 3.38 fJ/conv.-step. The average power consumption for quantizing 12-lead ECG signals is approximately 12.66 nW, demonstrating the ability to achieve ultralow-power quantization of ECG signals.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 7\",\"pages\":\"1838-1847\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10978047/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10978047/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A 0.6-V 9.38-Bit 6.9-kS/s Capacitor-Splitting Bypass Window SAR ADC for Wearable 12-Lead ECG Acquisition Systems
This article proposes a fully differential ten-bit energy-efficient successive approximation register (SAR) analog-to-digital converter (ADC) for wearable 12-lead electrocardiogram (ECG) acquisition system. The proposed ADC structure generates two bypass windows through capacitor splitting technique, which can skip unnecessary quantization steps. The judgment module of bypass windows only requires an XOR gate. By introducing redundant capacitors to participate in quantization, the total capacitance value is reduced by half. The proposed SAR ADC is fabricated using a standard 180-nm CMOS process. The measurement results show that it can achieve an effective number of bits (ENOBs) of 9.38 bits and a spurious-free dynamic range (SFDR) of 76.71 dB with a supply voltage of 0.6 V at a sampling rate ($\text{F}_{\mathrm {S}}$ ) of 6.94 kS/s. The power consumption is 15.61 nW when subjected to a 1.17-$\text{V}_{\mathrm {PP}}~3.45$ -kHz sinusoidal input, resulting in a figure of merit (FoM) of 3.38 fJ/conv.-step. The average power consumption for quantizing 12-lead ECG signals is approximately 12.66 nW, demonstrating the ability to achieve ultralow-power quantization of ECG signals.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.