{"title":"具有可编程感测放大器和tg移位器的高密度eDRAM宏用于基于逻辑指令的内存计算","authors":"Kunyao Lai;Enyi Yao;Zhenxing Li;Yongkui Yang","doi":"10.1109/TVLSI.2025.3561507","DOIUrl":null,"url":null,"abstract":"Embedded DRAM (eDRAM) has been widely adopted as on-chip cache memory in modern processors due to its high density. In this article, we propose a 2T gain-cell eDRAM-based macro that functions not only as traditional cache memory but also as an in-memory computing unit capable of performing logic operations. Furthermore, this eDRAM macro features in situ storing, completely eliminating the need for external memory or register access during computation. The sense amplifier in this macro is equipped with a programmable voltage reference, enabling support for various Boolean logic operations, including <sc>and</small>/<sc>nand</small>, <sc>or</small>/<sc>nor</small>, and <sc>not</small>. In addition, the macro integrates a transmission-gate (TG)-based shifter cluster to perform data shifting, which is commonly required in general computations. To enhance functionality, we design an instruction set that supports compound logic computations, allowing Boolean logic, shifting, and in situ storage to be executed within a single instruction. We validated this eDRAM macro in a 32-kb bitcell array using the 40-nm logic CMOS technology. Compared with state-of-the-art designs, our macro achieves a relatively high density of 729.2 kb/mm<sup>2</sup> and a competitive logic energy of 14.1 fJ/bit.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2069-2073"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Density eDRAM Macro With Programmable Sense Amplifier and TG-Shifter for Logical-Instruction-Based In-Memory Computing\",\"authors\":\"Kunyao Lai;Enyi Yao;Zhenxing Li;Yongkui Yang\",\"doi\":\"10.1109/TVLSI.2025.3561507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded DRAM (eDRAM) has been widely adopted as on-chip cache memory in modern processors due to its high density. In this article, we propose a 2T gain-cell eDRAM-based macro that functions not only as traditional cache memory but also as an in-memory computing unit capable of performing logic operations. Furthermore, this eDRAM macro features in situ storing, completely eliminating the need for external memory or register access during computation. The sense amplifier in this macro is equipped with a programmable voltage reference, enabling support for various Boolean logic operations, including <sc>and</small>/<sc>nand</small>, <sc>or</small>/<sc>nor</small>, and <sc>not</small>. In addition, the macro integrates a transmission-gate (TG)-based shifter cluster to perform data shifting, which is commonly required in general computations. To enhance functionality, we design an instruction set that supports compound logic computations, allowing Boolean logic, shifting, and in situ storage to be executed within a single instruction. We validated this eDRAM macro in a 32-kb bitcell array using the 40-nm logic CMOS technology. Compared with state-of-the-art designs, our macro achieves a relatively high density of 729.2 kb/mm<sup>2</sup> and a competitive logic energy of 14.1 fJ/bit.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 7\",\"pages\":\"2069-2073\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10977973/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10977973/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A High-Density eDRAM Macro With Programmable Sense Amplifier and TG-Shifter for Logical-Instruction-Based In-Memory Computing
Embedded DRAM (eDRAM) has been widely adopted as on-chip cache memory in modern processors due to its high density. In this article, we propose a 2T gain-cell eDRAM-based macro that functions not only as traditional cache memory but also as an in-memory computing unit capable of performing logic operations. Furthermore, this eDRAM macro features in situ storing, completely eliminating the need for external memory or register access during computation. The sense amplifier in this macro is equipped with a programmable voltage reference, enabling support for various Boolean logic operations, including and/nand, or/nor, and not. In addition, the macro integrates a transmission-gate (TG)-based shifter cluster to perform data shifting, which is commonly required in general computations. To enhance functionality, we design an instruction set that supports compound logic computations, allowing Boolean logic, shifting, and in situ storage to be executed within a single instruction. We validated this eDRAM macro in a 32-kb bitcell array using the 40-nm logic CMOS technology. Compared with state-of-the-art designs, our macro achieves a relatively high density of 729.2 kb/mm2 and a competitive logic energy of 14.1 fJ/bit.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.