{"title":"S3A-NPU:一种用于自监督学习和动态自适应记忆优化的高性能硬件加速器","authors":"Heuijee Yun;Daejin Park","doi":"10.1109/TVLSI.2025.3566949","DOIUrl":null,"url":null,"abstract":"Spiking self-supervised learning (SSL) has become prevalent for low power consumption and low-latency properties, as well as the ability to learn from large quantities of unlabeled data. However, the computational intensity and resource requirements are significant challenges to apply to accelerators. In this article, we propose the scalable, spiking self-supervised learning, streamline optimization accelerator (<inline-formula> <tex-math>$S^{3}$ </tex-math></inline-formula>A)-neural processing unit (NPU), a highly optimized accelerator for spiking SSL models. This architecture minimizes memory access by leveraging input data provided by the user and optimizes computation through the maximization of data reuse. By dynamically optimizing memory based on model characteristics and implementing specialized operations for data preprocessing, which are critical in SSL, computational efficiency can be significantly improved. The parallel processing lanes account for the two encoders in the SSL architecture, combined with a pipelined structure that considers the temporal data accumulation of spiking neural networks (SNNs) to enhance computational efficiency. We evaluate the design on field-programmable gate array (FPGA), where a 16-bit quantized spiking residual network (ResNet) model trained on the Canadian Institute for Advanced Research (CIFAR) and MNIST dataset has top 94.08% accuracy. <inline-formula> <tex-math>$S^{3}$ </tex-math></inline-formula>A-NPU optimization significantly improved computational resource utilization, resulting in a 25% reduction in latency. Moreover, as the first spiking self-supervised accelerator, it demonstrated highly efficient computation compared to existing accelerators, utilizing only 29k look up tables (LUTs) and eight block random access memories (BRAMs). This makes it highly suitable for resource-constrained applications, particularly in the context of spiking SSL models on edge devices. We implemented it on a silicon chip using a 130-nm process design kit (PDK), and the design was less than <inline-formula> <tex-math>$1~\\text {cm}^{2}$ </tex-math></inline-formula>.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"1886-1898"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010182","citationCount":"0","resultStr":"{\"title\":\"S3A-NPU: A High-Performance Hardware Accelerator for Spiking Self-Supervised Learning With Dynamic Adaptive Memory Optimization\",\"authors\":\"Heuijee Yun;Daejin Park\",\"doi\":\"10.1109/TVLSI.2025.3566949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking self-supervised learning (SSL) has become prevalent for low power consumption and low-latency properties, as well as the ability to learn from large quantities of unlabeled data. However, the computational intensity and resource requirements are significant challenges to apply to accelerators. In this article, we propose the scalable, spiking self-supervised learning, streamline optimization accelerator (<inline-formula> <tex-math>$S^{3}$ </tex-math></inline-formula>A)-neural processing unit (NPU), a highly optimized accelerator for spiking SSL models. This architecture minimizes memory access by leveraging input data provided by the user and optimizes computation through the maximization of data reuse. By dynamically optimizing memory based on model characteristics and implementing specialized operations for data preprocessing, which are critical in SSL, computational efficiency can be significantly improved. The parallel processing lanes account for the two encoders in the SSL architecture, combined with a pipelined structure that considers the temporal data accumulation of spiking neural networks (SNNs) to enhance computational efficiency. We evaluate the design on field-programmable gate array (FPGA), where a 16-bit quantized spiking residual network (ResNet) model trained on the Canadian Institute for Advanced Research (CIFAR) and MNIST dataset has top 94.08% accuracy. <inline-formula> <tex-math>$S^{3}$ </tex-math></inline-formula>A-NPU optimization significantly improved computational resource utilization, resulting in a 25% reduction in latency. Moreover, as the first spiking self-supervised accelerator, it demonstrated highly efficient computation compared to existing accelerators, utilizing only 29k look up tables (LUTs) and eight block random access memories (BRAMs). This makes it highly suitable for resource-constrained applications, particularly in the context of spiking SSL models on edge devices. We implemented it on a silicon chip using a 130-nm process design kit (PDK), and the design was less than <inline-formula> <tex-math>$1~\\\\text {cm}^{2}$ </tex-math></inline-formula>.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 7\",\"pages\":\"1886-1898\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010182\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11010182/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11010182/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
S3A-NPU: A High-Performance Hardware Accelerator for Spiking Self-Supervised Learning With Dynamic Adaptive Memory Optimization
Spiking self-supervised learning (SSL) has become prevalent for low power consumption and low-latency properties, as well as the ability to learn from large quantities of unlabeled data. However, the computational intensity and resource requirements are significant challenges to apply to accelerators. In this article, we propose the scalable, spiking self-supervised learning, streamline optimization accelerator ($S^{3}$ A)-neural processing unit (NPU), a highly optimized accelerator for spiking SSL models. This architecture minimizes memory access by leveraging input data provided by the user and optimizes computation through the maximization of data reuse. By dynamically optimizing memory based on model characteristics and implementing specialized operations for data preprocessing, which are critical in SSL, computational efficiency can be significantly improved. The parallel processing lanes account for the two encoders in the SSL architecture, combined with a pipelined structure that considers the temporal data accumulation of spiking neural networks (SNNs) to enhance computational efficiency. We evaluate the design on field-programmable gate array (FPGA), where a 16-bit quantized spiking residual network (ResNet) model trained on the Canadian Institute for Advanced Research (CIFAR) and MNIST dataset has top 94.08% accuracy. $S^{3}$ A-NPU optimization significantly improved computational resource utilization, resulting in a 25% reduction in latency. Moreover, as the first spiking self-supervised accelerator, it demonstrated highly efficient computation compared to existing accelerators, utilizing only 29k look up tables (LUTs) and eight block random access memories (BRAMs). This makes it highly suitable for resource-constrained applications, particularly in the context of spiking SSL models on edge devices. We implemented it on a silicon chip using a 130-nm process design kit (PDK), and the design was less than $1~\text {cm}^{2}$ .
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.