Wenjing Geng , Chuchu Cheng , Baoxin Ge , Yaohui Xu , Yufei Liu , Xinxin Ye , Caijin Huang , Weiwei Lei , Yang Wang , Dengrong Sun , Cheng Chen
{"title":"电荷选择性纳米氮化硼膜用于超快速和强化水净化","authors":"Wenjing Geng , Chuchu Cheng , Baoxin Ge , Yaohui Xu , Yufei Liu , Xinxin Ye , Caijin Huang , Weiwei Lei , Yang Wang , Dengrong Sun , Cheng Chen","doi":"10.1016/j.advmem.2025.100159","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane separation techniques could address global water scarcity and ensure water safety. However, the unavoidable concentration polarization effect remains a formidable challenge. Here, we present a nanoconfined catalysis boron nitride membrane confining active nanoparticles to elaborately regulate molecular separation and pollutant degradation. For positively charged pollutant, the nanoconfined catalysis membrane demonstrates a water permeance reaching high up to 1549 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, which also substantially increases the removal efficiency of organic pollutants from 71.9 % to above 99.9 %. For negatively charged pollutant, the membrane achieves nearly 100 % reduction to p-aminophenol within 4.06 ms retention time across 100 operational cycles. Density functional theory calculation results further confirm the charge selection of nanoconfined catalysis boron nitride membranes for enhanced water decontamination. The superior performance of nanoconfined catalysis membranes arises from synergistically integrating stable 2D nanochannels, uniform catalytic layers, and controlled charge transfer, effectively mitigating concentration polarization in wastewater treatment.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100159"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge-selective nanoconfined boron nitride membranes for ultrafast and enhanced water decontamination\",\"authors\":\"Wenjing Geng , Chuchu Cheng , Baoxin Ge , Yaohui Xu , Yufei Liu , Xinxin Ye , Caijin Huang , Weiwei Lei , Yang Wang , Dengrong Sun , Cheng Chen\",\"doi\":\"10.1016/j.advmem.2025.100159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Membrane separation techniques could address global water scarcity and ensure water safety. However, the unavoidable concentration polarization effect remains a formidable challenge. Here, we present a nanoconfined catalysis boron nitride membrane confining active nanoparticles to elaborately regulate molecular separation and pollutant degradation. For positively charged pollutant, the nanoconfined catalysis membrane demonstrates a water permeance reaching high up to 1549 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, which also substantially increases the removal efficiency of organic pollutants from 71.9 % to above 99.9 %. For negatively charged pollutant, the membrane achieves nearly 100 % reduction to p-aminophenol within 4.06 ms retention time across 100 operational cycles. Density functional theory calculation results further confirm the charge selection of nanoconfined catalysis boron nitride membranes for enhanced water decontamination. The superior performance of nanoconfined catalysis membranes arises from synergistically integrating stable 2D nanochannels, uniform catalytic layers, and controlled charge transfer, effectively mitigating concentration polarization in wastewater treatment.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100159\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
膜分离技术可以解决全球水资源短缺问题,确保水安全。然而,不可避免的集中极化效应仍然是一个巨大的挑战。在这里,我们提出了一种纳米限制的催化氮化硼膜,限制活性纳米颗粒来精细地调节分子分离和污染物降解。对于带正电的污染物,纳米限制催化膜的透水性高达1549 L m−2 h−1 bar−1,有机污染物的去除率也从71.9%大幅提高到99.9%以上。对于带负电荷的污染物,在100个操作循环中,膜在4.06 ms的保留时间内实现了近100%的对氨基酚还原。密度泛函理论计算结果进一步证实了纳米限制催化氮化硼膜的电荷选择对水净化的增强作用。纳米约束催化膜的优异性能源于稳定的二维纳米通道、均匀的催化层和可控的电荷转移协同整合,有效缓解了废水处理中的浓度极化。
Charge-selective nanoconfined boron nitride membranes for ultrafast and enhanced water decontamination
Membrane separation techniques could address global water scarcity and ensure water safety. However, the unavoidable concentration polarization effect remains a formidable challenge. Here, we present a nanoconfined catalysis boron nitride membrane confining active nanoparticles to elaborately regulate molecular separation and pollutant degradation. For positively charged pollutant, the nanoconfined catalysis membrane demonstrates a water permeance reaching high up to 1549 L m−2 h−1 bar−1, which also substantially increases the removal efficiency of organic pollutants from 71.9 % to above 99.9 %. For negatively charged pollutant, the membrane achieves nearly 100 % reduction to p-aminophenol within 4.06 ms retention time across 100 operational cycles. Density functional theory calculation results further confirm the charge selection of nanoconfined catalysis boron nitride membranes for enhanced water decontamination. The superior performance of nanoconfined catalysis membranes arises from synergistically integrating stable 2D nanochannels, uniform catalytic layers, and controlled charge transfer, effectively mitigating concentration polarization in wastewater treatment.