Abdullah Guvendi , Omar Mustafa , Abdulkerim Karabulut
{"title":"螺旋石墨烯中的阻尼光子模式","authors":"Abdullah Guvendi , Omar Mustafa , Abdulkerim Karabulut","doi":"10.1016/j.aop.2025.170132","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the behavior of spin-1 vector bosons in helical spacetime, focusing on photonic modes in helical graphene structures. We model the helical graphene surface as a smooth, continuous, and distortion-free manifold, effectively adopting the continuum approximation. By solving the fully covariant vector boson equation, we derive exact solutions that describe the quantum states of photons in a curved helical background, revealing their energy spectra, mode profiles, and decay dynamics. We find that the decay times of damped photonic modes range from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow></math></span> s as the helical pitch (<span><math><mi>a</mi></math></span>) varies from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> nanometers to 1 nanometer, indicating that the structure efficiently absorbs all photonic modes. Additionally, the probability density functions exhibit time dependence, complementing their spatial variation. These findings provide a foundation for the design of ultrafast graphene photodetectors, graphene photodevices for high-speed optical communications, advanced photonic devices, and quantum materials based on helical graphene for various nanophotonic applications.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"480 ","pages":"Article 170132"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damped photonic modes in helical graphene\",\"authors\":\"Abdullah Guvendi , Omar Mustafa , Abdulkerim Karabulut\",\"doi\":\"10.1016/j.aop.2025.170132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze the behavior of spin-1 vector bosons in helical spacetime, focusing on photonic modes in helical graphene structures. We model the helical graphene surface as a smooth, continuous, and distortion-free manifold, effectively adopting the continuum approximation. By solving the fully covariant vector boson equation, we derive exact solutions that describe the quantum states of photons in a curved helical background, revealing their energy spectra, mode profiles, and decay dynamics. We find that the decay times of damped photonic modes range from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow></math></span> s as the helical pitch (<span><math><mi>a</mi></math></span>) varies from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> nanometers to 1 nanometer, indicating that the structure efficiently absorbs all photonic modes. Additionally, the probability density functions exhibit time dependence, complementing their spatial variation. These findings provide a foundation for the design of ultrafast graphene photodetectors, graphene photodevices for high-speed optical communications, advanced photonic devices, and quantum materials based on helical graphene for various nanophotonic applications.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"480 \",\"pages\":\"Article 170132\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625002143\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625002143","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We analyze the behavior of spin-1 vector bosons in helical spacetime, focusing on photonic modes in helical graphene structures. We model the helical graphene surface as a smooth, continuous, and distortion-free manifold, effectively adopting the continuum approximation. By solving the fully covariant vector boson equation, we derive exact solutions that describe the quantum states of photons in a curved helical background, revealing their energy spectra, mode profiles, and decay dynamics. We find that the decay times of damped photonic modes range from to s as the helical pitch () varies from nanometers to 1 nanometer, indicating that the structure efficiently absorbs all photonic modes. Additionally, the probability density functions exhibit time dependence, complementing their spatial variation. These findings provide a foundation for the design of ultrafast graphene photodetectors, graphene photodevices for high-speed optical communications, advanced photonic devices, and quantum materials based on helical graphene for various nanophotonic applications.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.