顺序碱浸、酸浸、溶剂萃取、汽提从离子型稀土提纯渣中回收稀土、Al、U、Th的工艺研究

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Qiaofa Lan , Xiaolin Zhang , Fei Niu , Donghui Liu , Youming Yang
{"title":"顺序碱浸、酸浸、溶剂萃取、汽提从离子型稀土提纯渣中回收稀土、Al、U、Th的工艺研究","authors":"Qiaofa Lan ,&nbsp;Xiaolin Zhang ,&nbsp;Fei Niu ,&nbsp;Donghui Liu ,&nbsp;Youming Yang","doi":"10.1016/j.hydromet.2025.106524","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic rare earth purification residue (PR) originates from refining of ionic rare earth ores and is predominantly composed of rare earth elements (REEs), aluminum (Al), and silicon (Si). This is a recyclable secondary resource. It provides substantial challenges due to its classification as low-level radioactive waste (LLW). Recognizing the distinctive properties of PR, this paper describes a highly efficient process for the recovery and enrichment of Al, REEs, uranium (U), and thorium (Th) through a multistep process encompassing alkali digestion, hydrochloric acid leaching, sole extractant enrichment and separation. At a controlled temperature of 70 °C, the Al digestion efficiency reached 88.9 %. The alkali digestion residue underwent hydrochloric acid leaching, yielding leaching efficiencies of 99.9 %, 99.4 %, and 99.0 % for REEs, U(VI), and Th(IV), respectively. Notably, the amount of insoluble residue was reduced by 90 %, and it was transformed from LLW into general solid waste residue. Additionally, the utilization of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) as the sole extractant provided 100 % extraction efficiencies for U(VI) and Th(IV). After stepwise stripping processes, the purities of both U(VI) and Th(IV) exceeded 90 %. The REEs were precipitated as RE<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub> and subsequently calcined to produce rare earth oxides with a recovery of 90.1 % and a purity of 97.4 %. This comprehensive scheme addressed the persistent challenges associated with long-term storage and radiological environmental risk.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106524"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovery process of rare earths, Al, U, and Th from ionic rare earth purification residue using sequential alkaline leaching, acid leaching solvent extraction and stripping\",\"authors\":\"Qiaofa Lan ,&nbsp;Xiaolin Zhang ,&nbsp;Fei Niu ,&nbsp;Donghui Liu ,&nbsp;Youming Yang\",\"doi\":\"10.1016/j.hydromet.2025.106524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ionic rare earth purification residue (PR) originates from refining of ionic rare earth ores and is predominantly composed of rare earth elements (REEs), aluminum (Al), and silicon (Si). This is a recyclable secondary resource. It provides substantial challenges due to its classification as low-level radioactive waste (LLW). Recognizing the distinctive properties of PR, this paper describes a highly efficient process for the recovery and enrichment of Al, REEs, uranium (U), and thorium (Th) through a multistep process encompassing alkali digestion, hydrochloric acid leaching, sole extractant enrichment and separation. At a controlled temperature of 70 °C, the Al digestion efficiency reached 88.9 %. The alkali digestion residue underwent hydrochloric acid leaching, yielding leaching efficiencies of 99.9 %, 99.4 %, and 99.0 % for REEs, U(VI), and Th(IV), respectively. Notably, the amount of insoluble residue was reduced by 90 %, and it was transformed from LLW into general solid waste residue. Additionally, the utilization of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) as the sole extractant provided 100 % extraction efficiencies for U(VI) and Th(IV). After stepwise stripping processes, the purities of both U(VI) and Th(IV) exceeded 90 %. The REEs were precipitated as RE<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub> and subsequently calcined to produce rare earth oxides with a recovery of 90.1 % and a purity of 97.4 %. This comprehensive scheme addressed the persistent challenges associated with long-term storage and radiological environmental risk.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"236 \",\"pages\":\"Article 106524\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25000891\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000891","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

离子型稀土提纯渣(PR)是离子型稀土矿提纯后的产物,主要由稀土元素(ree)、铝(Al)和硅(Si)组成。这是一种可回收的二次资源。由于它被归类为低放射性废物(LLW),因此带来了巨大的挑战。认识到PR的独特性质,本文描述了一种通过碱消化、盐酸浸出、单萃取剂富集和分离等多步骤过程回收和富集Al、ree、铀(U)和钍(Th)的高效工艺。在70℃的控制温度下,铝的溶出效率达到88.9%。碱溶渣进行盐酸浸出,稀土、铀(VI)和钍(IV)的浸出效率分别为99.9%、99.4%和99.0%。值得注意的是,不溶性废渣的量减少了90%,并由LLW转化为一般固体废渣。此外,利用2-乙基己基膦酸单2-乙基己基酯(HEHEHP)作为唯一萃取剂,对U(VI)和Th(IV)的萃取效率为100%。分步溶出后,U(VI)和Th(IV)的纯度均超过90%。稀土元素以RE2(C2O4)3的形式析出,煅烧制得稀土氧化物,回收率为90.1%,纯度为97.4%。这一综合方案解决了与长期储存和辐射环境风险相关的持续挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovery process of rare earths, Al, U, and Th from ionic rare earth purification residue using sequential alkaline leaching, acid leaching solvent extraction and stripping
Ionic rare earth purification residue (PR) originates from refining of ionic rare earth ores and is predominantly composed of rare earth elements (REEs), aluminum (Al), and silicon (Si). This is a recyclable secondary resource. It provides substantial challenges due to its classification as low-level radioactive waste (LLW). Recognizing the distinctive properties of PR, this paper describes a highly efficient process for the recovery and enrichment of Al, REEs, uranium (U), and thorium (Th) through a multistep process encompassing alkali digestion, hydrochloric acid leaching, sole extractant enrichment and separation. At a controlled temperature of 70 °C, the Al digestion efficiency reached 88.9 %. The alkali digestion residue underwent hydrochloric acid leaching, yielding leaching efficiencies of 99.9 %, 99.4 %, and 99.0 % for REEs, U(VI), and Th(IV), respectively. Notably, the amount of insoluble residue was reduced by 90 %, and it was transformed from LLW into general solid waste residue. Additionally, the utilization of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) as the sole extractant provided 100 % extraction efficiencies for U(VI) and Th(IV). After stepwise stripping processes, the purities of both U(VI) and Th(IV) exceeded 90 %. The REEs were precipitated as RE2(C2O4)3 and subsequently calcined to produce rare earth oxides with a recovery of 90.1 % and a purity of 97.4 %. This comprehensive scheme addressed the persistent challenges associated with long-term storage and radiological environmental risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信