基于小脑规范性特征预测精神和神经疾病

IF 4 Q2 NEUROSCIENCES
Milin Kim , Nitin Sharma , Esten H. Leonardsen , Saige Rutherford , Geir Selbæk , Karin Persson , Nils Eiel Steen , Olav B. Smeland , Torill Ueland , Geneviève Richard , Aikaterina Manoli , Sofie L. Valk , Dag Alnæs , Christian F. Beckman , Andre F. Marquand , Ole A. Andreassen , Lars T. Westlye , Thomas Wolfers , Torgeir Moberget , Alzheimer’s Disease Neuroimaging Initiative
{"title":"基于小脑规范性特征预测精神和神经疾病","authors":"Milin Kim ,&nbsp;Nitin Sharma ,&nbsp;Esten H. Leonardsen ,&nbsp;Saige Rutherford ,&nbsp;Geir Selbæk ,&nbsp;Karin Persson ,&nbsp;Nils Eiel Steen ,&nbsp;Olav B. Smeland ,&nbsp;Torill Ueland ,&nbsp;Geneviève Richard ,&nbsp;Aikaterina Manoli ,&nbsp;Sofie L. Valk ,&nbsp;Dag Alnæs ,&nbsp;Christian F. Beckman ,&nbsp;Andre F. Marquand ,&nbsp;Ole A. Andreassen ,&nbsp;Lars T. Westlye ,&nbsp;Thomas Wolfers ,&nbsp;Torgeir Moberget ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.bpsgos.2025.100541","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Mental and neurological conditions have been linked to structural brain variations. However, aside from dementia, the value of brain structural characteristics derived from brain scans for prediction is relatively low. One reason for this limitation is the clinical and biological heterogeneity inherent to such conditions. Recent studies have implicated aberrations in the cerebellum, a relatively understudied brain region, in these clinical conditions.</div></div><div><h3>Methods</h3><div>Here, we used machine learning to test the value of individual deviations from normative cerebellar development across the lifespan (based on trained data from &gt;27,000 participants) for prediction of autism spectrum disorder (ASD) (<em>n</em> = 317), bipolar disorder (<em>n</em> = 238), schizophrenia (SZ) (<em>n</em> = 195), mild cognitive impairment (<em>n</em> = 122), and Alzheimer's disease (<em>n</em> = 116); individuals without diagnoses were matched to the clinical cohorts. We applied several atlases and derived median, variance, and percentages of extreme deviations within each region of interest.</div></div><div><h3>Results</h3><div>The results show that lobular and voxelwise cerebellar data can be used to discriminate reference samples from individuals with ASD and SZ with moderate accuracy (the area under the receiver operating characteristic curves ranged from 0.56 to 0.65). Contributions to these predictive models originated from both anterior and posterior regions of the cerebellum.</div></div><div><h3>Conclusions</h3><div>Our study highlights the utility of cerebellar normative modeling in predicting ASD and SZ, aided by 4 cerebellar atlases that enhanced the interpretability of the findings.</div></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"5 5","pages":"Article 100541"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Mental and Neurological Illnesses Based on Cerebellar Normative Features\",\"authors\":\"Milin Kim ,&nbsp;Nitin Sharma ,&nbsp;Esten H. Leonardsen ,&nbsp;Saige Rutherford ,&nbsp;Geir Selbæk ,&nbsp;Karin Persson ,&nbsp;Nils Eiel Steen ,&nbsp;Olav B. Smeland ,&nbsp;Torill Ueland ,&nbsp;Geneviève Richard ,&nbsp;Aikaterina Manoli ,&nbsp;Sofie L. Valk ,&nbsp;Dag Alnæs ,&nbsp;Christian F. Beckman ,&nbsp;Andre F. Marquand ,&nbsp;Ole A. Andreassen ,&nbsp;Lars T. Westlye ,&nbsp;Thomas Wolfers ,&nbsp;Torgeir Moberget ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative\",\"doi\":\"10.1016/j.bpsgos.2025.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Mental and neurological conditions have been linked to structural brain variations. However, aside from dementia, the value of brain structural characteristics derived from brain scans for prediction is relatively low. One reason for this limitation is the clinical and biological heterogeneity inherent to such conditions. Recent studies have implicated aberrations in the cerebellum, a relatively understudied brain region, in these clinical conditions.</div></div><div><h3>Methods</h3><div>Here, we used machine learning to test the value of individual deviations from normative cerebellar development across the lifespan (based on trained data from &gt;27,000 participants) for prediction of autism spectrum disorder (ASD) (<em>n</em> = 317), bipolar disorder (<em>n</em> = 238), schizophrenia (SZ) (<em>n</em> = 195), mild cognitive impairment (<em>n</em> = 122), and Alzheimer's disease (<em>n</em> = 116); individuals without diagnoses were matched to the clinical cohorts. We applied several atlases and derived median, variance, and percentages of extreme deviations within each region of interest.</div></div><div><h3>Results</h3><div>The results show that lobular and voxelwise cerebellar data can be used to discriminate reference samples from individuals with ASD and SZ with moderate accuracy (the area under the receiver operating characteristic curves ranged from 0.56 to 0.65). Contributions to these predictive models originated from both anterior and posterior regions of the cerebellum.</div></div><div><h3>Conclusions</h3><div>Our study highlights the utility of cerebellar normative modeling in predicting ASD and SZ, aided by 4 cerebellar atlases that enhanced the interpretability of the findings.</div></div>\",\"PeriodicalId\":72373,\"journal\":{\"name\":\"Biological psychiatry global open science\",\"volume\":\"5 5\",\"pages\":\"Article 100541\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry global open science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667174325000953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174325000953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

精神和神经系统疾病与大脑结构变异有关。然而,除了痴呆症之外,通过脑部扫描获得的大脑结构特征的预测价值相对较低。这种限制的一个原因是这种疾病固有的临床和生物学异质性。最近的研究表明,在这些临床条件下,小脑是一个相对研究不足的大脑区域。方法在这里,我们使用机器学习来测试个体在整个生命周期中偏离标准小脑发育的价值(基于来自27,000名参与者的训练数据),以预测自闭症谱系障碍(ASD) (n = 317)、双相情感障碍(n = 238)、精神分裂症(n = 195)、轻度认知障碍(n = 122)和阿尔茨海默病(n = 116);未确诊的个体与临床队列相匹配。我们应用了几个地图集,得出了每个感兴趣区域内的中位数、方差和极端偏差的百分比。结果小叶和体向小脑数据可用于区分ASD和SZ个体的参考样本,准确度中等(受试者工作特征曲线下面积在0.56 ~ 0.65之间)。对这些预测模型的贡献来自小脑的前部和后部区域。结论我们的研究强调了小脑规范模型在预测ASD和SZ方面的应用,并辅以4个小脑图谱,增强了结果的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Mental and Neurological Illnesses Based on Cerebellar Normative Features

Background

Mental and neurological conditions have been linked to structural brain variations. However, aside from dementia, the value of brain structural characteristics derived from brain scans for prediction is relatively low. One reason for this limitation is the clinical and biological heterogeneity inherent to such conditions. Recent studies have implicated aberrations in the cerebellum, a relatively understudied brain region, in these clinical conditions.

Methods

Here, we used machine learning to test the value of individual deviations from normative cerebellar development across the lifespan (based on trained data from >27,000 participants) for prediction of autism spectrum disorder (ASD) (n = 317), bipolar disorder (n = 238), schizophrenia (SZ) (n = 195), mild cognitive impairment (n = 122), and Alzheimer's disease (n = 116); individuals without diagnoses were matched to the clinical cohorts. We applied several atlases and derived median, variance, and percentages of extreme deviations within each region of interest.

Results

The results show that lobular and voxelwise cerebellar data can be used to discriminate reference samples from individuals with ASD and SZ with moderate accuracy (the area under the receiver operating characteristic curves ranged from 0.56 to 0.65). Contributions to these predictive models originated from both anterior and posterior regions of the cerebellum.

Conclusions

Our study highlights the utility of cerebellar normative modeling in predicting ASD and SZ, aided by 4 cerebellar atlases that enhanced the interpretability of the findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信