基于多共振散射体可旋转声晶体的声开关

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
David Ramírez-Solana , Valentino Sangiorgio , Rubén Picó , Javier Redondo
{"title":"基于多共振散射体可旋转声晶体的声开关","authors":"David Ramírez-Solana ,&nbsp;Valentino Sangiorgio ,&nbsp;Rubén Picó ,&nbsp;Javier Redondo","doi":"10.1016/j.apacoust.2025.110913","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110913"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic switch based on rotatable sonic crystal with multiresonant scatterers\",\"authors\":\"David Ramírez-Solana ,&nbsp;Valentino Sangiorgio ,&nbsp;Rubén Picó ,&nbsp;Javier Redondo\",\"doi\":\"10.1016/j.apacoust.2025.110913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"240 \",\"pages\":\"Article 110913\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25003858\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003858","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于含多共振散射体的声晶体(SC)的声开关。SC在二维格子结构中工作,散射体中包含调谐到不同频率的亥姆霍兹谐振器(HRs)。通过将所有散射体旋转90°,可以改变Bragg带隙(Bragg BGs)和HRs的BGs之间的相互作用,从而实现选择性频率滤波和波传播控制。尽管在低频下工作的sc已经得到了广泛的研究,但在中低频范围内(500-2500 Hz)实现可重构声学开关的方法仍然很少。这是本研究突出的新颖之处之一。3d打印结构的简单性和成本效益,再加上它的中空设计,最大限度地减少了吸收,增强了它的实用性。在消声室中进行的实验验证表明,隔音性能发生了显著变化,最大对比度为20 dB。这种设计为城市和工业环境中的降噪、自适应声学环境、声学传感器,甚至是声学能量收集开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic switch based on rotatable sonic crystal with multiresonant scatterers
This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信