David Ramírez-Solana , Valentino Sangiorgio , Rubén Picó , Javier Redondo
{"title":"基于多共振散射体可旋转声晶体的声开关","authors":"David Ramírez-Solana , Valentino Sangiorgio , Rubén Picó , Javier Redondo","doi":"10.1016/j.apacoust.2025.110913","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110913"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic switch based on rotatable sonic crystal with multiresonant scatterers\",\"authors\":\"David Ramírez-Solana , Valentino Sangiorgio , Rubén Picó , Javier Redondo\",\"doi\":\"10.1016/j.apacoust.2025.110913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"240 \",\"pages\":\"Article 110913\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25003858\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003858","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Acoustic switch based on rotatable sonic crystal with multiresonant scatterers
This research introduces an acoustic switch based on a Sonic Crystal (SC) containing multiresonant scatterers. The SC operates in a square 2D lattice configuration with scatterers containing Helmholtz resonators (HRs) tuned to different frequencies. By rotating all scatterers by 90°, the interaction between the Bragg bandgaps (Bragg BGs) and the HRs' BGs can be modified, allowing selective frequency filtering and control of wave propagation. Although SCs operating at low frequencies have been widely investigated, the implementation of reconfigurable acoustic switches in the low-to-mid frequency range (500–2500 Hz) remains scarce. This is one of the novelties highlighted in the present study. The simplicity and cost-effectiveness of the 3D-printed structure, coupled with its hollow design that minimizes absorption, enhances its practicality. Experimental validation conducted in an anechoic chamber shows a significant change in acoustic insulation performance, with a maximum contrast ratio of 20 dB. This design opens up new possibilities for noise reduction in urban and industrial environments, adaptive acoustic environments, acoustic sensors, and even acoustic energy harvesting.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.