{"title":"椭圆膜壳模型的表面网格DG-VEM","authors":"Qian Yang , Xiaoqin Shen , Jikun Zhao , Zhiming Gao","doi":"10.1016/j.apnum.2025.06.014","DOIUrl":null,"url":null,"abstract":"<div><div>Elliptic membrane shell (EMS), characterized by a system with complex variable coefficients on a surface, poses significant challenges for numerical discretization. In this paper, leveraging the differing regularity of displacement components, we propose a discontinuous Galerkin virtual element method (DG-VEM) for the EMS model. Specifically, we construct <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-continuous virtual element spaces for the first two components, whereas the third component is discretized on each element using a polynomial of degree <em>l</em>, with no continuity enforced across element boundaries. This method offers high mesh flexibility, eliminates the need for explicit basis function expressions, and improves accuracy to achieve convergence of any desired order. Furthermore, we establish the existence, uniqueness, stability, and convergence of the numerical solution, along with rigorous error estimates. Several numerical examples are presented to test the convergence and stability of the DG-VEM. Additionally, we demonstrate the method's adaptability to diverse grid subdivisions and show that, for comparable error levels, the DG-VEM for the EMS model requires significantly fewer degrees of freedom than traditional finite element methods.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 298-318"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A surface mesh DG-VEM for elliptic membrane shell model\",\"authors\":\"Qian Yang , Xiaoqin Shen , Jikun Zhao , Zhiming Gao\",\"doi\":\"10.1016/j.apnum.2025.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Elliptic membrane shell (EMS), characterized by a system with complex variable coefficients on a surface, poses significant challenges for numerical discretization. In this paper, leveraging the differing regularity of displacement components, we propose a discontinuous Galerkin virtual element method (DG-VEM) for the EMS model. Specifically, we construct <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-continuous virtual element spaces for the first two components, whereas the third component is discretized on each element using a polynomial of degree <em>l</em>, with no continuity enforced across element boundaries. This method offers high mesh flexibility, eliminates the need for explicit basis function expressions, and improves accuracy to achieve convergence of any desired order. Furthermore, we establish the existence, uniqueness, stability, and convergence of the numerical solution, along with rigorous error estimates. Several numerical examples are presented to test the convergence and stability of the DG-VEM. Additionally, we demonstrate the method's adaptability to diverse grid subdivisions and show that, for comparable error levels, the DG-VEM for the EMS model requires significantly fewer degrees of freedom than traditional finite element methods.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"217 \",\"pages\":\"Pages 298-318\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016892742500131X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742500131X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A surface mesh DG-VEM for elliptic membrane shell model
Elliptic membrane shell (EMS), characterized by a system with complex variable coefficients on a surface, poses significant challenges for numerical discretization. In this paper, leveraging the differing regularity of displacement components, we propose a discontinuous Galerkin virtual element method (DG-VEM) for the EMS model. Specifically, we construct -continuous virtual element spaces for the first two components, whereas the third component is discretized on each element using a polynomial of degree l, with no continuity enforced across element boundaries. This method offers high mesh flexibility, eliminates the need for explicit basis function expressions, and improves accuracy to achieve convergence of any desired order. Furthermore, we establish the existence, uniqueness, stability, and convergence of the numerical solution, along with rigorous error estimates. Several numerical examples are presented to test the convergence and stability of the DG-VEM. Additionally, we demonstrate the method's adaptability to diverse grid subdivisions and show that, for comparable error levels, the DG-VEM for the EMS model requires significantly fewer degrees of freedom than traditional finite element methods.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.