二维定常不可压缩粘性流的高阶混合紧致差分格式

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Tingfu Ma , Yongbin Ge
{"title":"二维定常不可压缩粘性流的高阶混合紧致差分格式","authors":"Tingfu Ma ,&nbsp;Yongbin Ge","doi":"10.1016/j.camwa.2025.06.028","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a novel sixth-order blended compact difference (BCD) schemes for solving the 2D vorticity-stream function formulation of the incompressible Navier-Stokes (N-S) equations. The proposed BCD schemes are designed by blending explicit and implicit compact difference schemes, simplifying the algorithm design and coding for solving the 2D N-S equations. Furthermore, we developed a new fifth-order accuracy boundary scheme for the vorticity of various incompressible viscous flows. To validate the effectiveness of the BCD schemes, we conducted numerical experiments involving the 2D N-S equations with exact solutions and Dirichlet boundary conditions, the classical lid-driven square cavity, the backward-facing step flow, and natural convection problems. We compare the numerical results computed by the proposed BCD scheme with those existing results in the literature. It is shown that the numerical results using the BCD scheme on coarser grids are in good agreement with available calculation results on finer grids across all cases in the literature.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"194 ","pages":"Pages 288-315"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-order blended compact difference (BCD) scheme for two-dimensional steady incompressible viscous flows\",\"authors\":\"Tingfu Ma ,&nbsp;Yongbin Ge\",\"doi\":\"10.1016/j.camwa.2025.06.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we propose a novel sixth-order blended compact difference (BCD) schemes for solving the 2D vorticity-stream function formulation of the incompressible Navier-Stokes (N-S) equations. The proposed BCD schemes are designed by blending explicit and implicit compact difference schemes, simplifying the algorithm design and coding for solving the 2D N-S equations. Furthermore, we developed a new fifth-order accuracy boundary scheme for the vorticity of various incompressible viscous flows. To validate the effectiveness of the BCD schemes, we conducted numerical experiments involving the 2D N-S equations with exact solutions and Dirichlet boundary conditions, the classical lid-driven square cavity, the backward-facing step flow, and natural convection problems. We compare the numerical results computed by the proposed BCD scheme with those existing results in the literature. It is shown that the numerical results using the BCD scheme on coarser grids are in good agreement with available calculation results on finer grids across all cases in the literature.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"194 \",\"pages\":\"Pages 288-315\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125002718\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002718","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种新的六阶混合紧差分(BCD)格式来求解不可压缩Navier-Stokes (N-S)方程的二维涡流函数形式。本文提出的BCD格式通过混合显式和隐式紧凑差分格式设计,简化了求解二维N-S方程的算法设计和编码。此外,我们开发了一种新的五阶精度边界格式,用于各种不可压缩粘性流动的涡度。为了验证BCD格式的有效性,我们对具有精确解和Dirichlet边界条件的二维N-S方程、经典的盖驱动方形腔、后向阶流和自然对流问题进行了数值实验。我们将所提出的BCD格式计算的数值结果与文献中已有的结果进行了比较。结果表明,采用BCD格式在粗网格上得到的数值结果与文献中所有情况下在细网格上得到的计算结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-order blended compact difference (BCD) scheme for two-dimensional steady incompressible viscous flows
In this study, we propose a novel sixth-order blended compact difference (BCD) schemes for solving the 2D vorticity-stream function formulation of the incompressible Navier-Stokes (N-S) equations. The proposed BCD schemes are designed by blending explicit and implicit compact difference schemes, simplifying the algorithm design and coding for solving the 2D N-S equations. Furthermore, we developed a new fifth-order accuracy boundary scheme for the vorticity of various incompressible viscous flows. To validate the effectiveness of the BCD schemes, we conducted numerical experiments involving the 2D N-S equations with exact solutions and Dirichlet boundary conditions, the classical lid-driven square cavity, the backward-facing step flow, and natural convection problems. We compare the numerical results computed by the proposed BCD scheme with those existing results in the literature. It is shown that the numerical results using the BCD scheme on coarser grids are in good agreement with available calculation results on finer grids across all cases in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信