具有记忆和Hardy型势的波动方程动力学

IF 2.4 2区 数学 Q1 MATHEMATICS
Miaomiao Guo , Bo You , Tomás Caraballo
{"title":"具有记忆和Hardy型势的波动方程动力学","authors":"Miaomiao Guo ,&nbsp;Bo You ,&nbsp;Tomás Caraballo","doi":"10.1016/j.jde.2025.113580","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the well-posedness and long-time dynamics for a wave equation with memory and Hardy type potentials. It is first proved the existence and uniqueness of weak solutions based on the Faedo-Galerkin approximation for <span><math><mn>0</mn><mo>≤</mo><mi>λ</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Moreover, the existence of a global attractor with finite fractal dimension is shown by establishing a quasi-stability inequality. Furthermore, we also establish the asymptotic regularity of the weak solution outside arbitrarily small neighborhoods of the origin. Finally, the upper semicontinuity of attractors is established when the parameter <em>λ</em> goes to <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113580"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a wave equation with memory and Hardy type potentials\",\"authors\":\"Miaomiao Guo ,&nbsp;Bo You ,&nbsp;Tomás Caraballo\",\"doi\":\"10.1016/j.jde.2025.113580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the well-posedness and long-time dynamics for a wave equation with memory and Hardy type potentials. It is first proved the existence and uniqueness of weak solutions based on the Faedo-Galerkin approximation for <span><math><mn>0</mn><mo>≤</mo><mi>λ</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Moreover, the existence of a global attractor with finite fractal dimension is shown by establishing a quasi-stability inequality. Furthermore, we also establish the asymptotic regularity of the weak solution outside arbitrarily small neighborhoods of the origin. Finally, the upper semicontinuity of attractors is established when the parameter <em>λ</em> goes to <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113580\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有记忆和Hardy型势的波动方程的适定性和长时间动力学问题。这是第一次证明了弱解的存在性和唯一性基于Faedo-Galerkin近似为0≤λ≤(1−δ1)λ⁎。此外,通过建立一个拟稳定性不等式,证明了具有有限分维数的全局吸引子的存在性。此外,我们还建立了弱解在原点的任意小邻域外的渐近正则性。最后,在参数λ趋于0+时,建立了吸引子的上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a wave equation with memory and Hardy type potentials
This paper is concerned with the well-posedness and long-time dynamics for a wave equation with memory and Hardy type potentials. It is first proved the existence and uniqueness of weak solutions based on the Faedo-Galerkin approximation for 0λ(1δ1)λ. Moreover, the existence of a global attractor with finite fractal dimension is shown by establishing a quasi-stability inequality. Furthermore, we also establish the asymptotic regularity of the weak solution outside arbitrarily small neighborhoods of the origin. Finally, the upper semicontinuity of attractors is established when the parameter λ goes to 0+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信