储罐边界条件对原油沸翻火灾影响的实验研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yueyang Li , Mingze Li , Guohua Luan , Qi Jing , Xin Li , Yuntao Li , Laibin Zhang
{"title":"储罐边界条件对原油沸翻火灾影响的实验研究","authors":"Yueyang Li ,&nbsp;Mingze Li ,&nbsp;Guohua Luan ,&nbsp;Qi Jing ,&nbsp;Xin Li ,&nbsp;Yuntao Li ,&nbsp;Laibin Zhang","doi":"10.1016/j.ijthermalsci.2025.110118","DOIUrl":null,"url":null,"abstract":"<div><div>Water present at the bottom of crude oil storage tanks can lead to boilover phenomena during a fire, posing significant hazards. As the vessel containing crude oil, understanding the impact of tank boundary conditions on boilover provides theoretical support for tank design. This study investigates the effects of tank opening size, wall conditions, and dimensions through a series of experiments. The results show that reducing the tank opening size initially promotes, then inhibits combustion. When the opening is sufficiently small, the hot zone disappears, delaying the boilover onset time from 43.62 min to 130.35 min. The tank wall conditions significantly influence boilover behavior. When an interlayer is added to the tank wall and filled with air, it provides thermal insulation, reducing the boilover onset time to 40 % of that in an ordinary tank, while increasing the hot wave propagation rate by 1.5 times. When the interlayer is filled with static or flowing water, the formation of the hot zone is suppressed and no boilover occurs. The study shows that as tank diameter increases, boilover ejection intensity decreases, boilover onset time shortens (<span><math><mrow><msub><mi>t</mi><mi>b</mi></msub><mo>∝</mo><mfrac><mn>1</mn><msqrt><mi>D</mi></msqrt></mfrac></mrow></math></span>), and hot wave propagation rate increases before stabilizing. A theoretical model for hot wave propagation is derived from the energy conservation equation. A set of large-scale (<em>D</em>:1.5m) comparison experiments is conducted, and it is found that the hot zone temperature remains constant in the radial direction, but the hot zone temperature decreases instead of increasing compared to the small-scale experiments. For cases where smoke obscures the flame, a method for estimating the maximum flame height during the boiling period based on the solid flame radiation model is proposed. The results of the study help provide guidance for fire protection design and firefighting strategies in storage tanks.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"217 ","pages":"Article 110118"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the effect of storage tank boundary conditions on crude oil boilover fires\",\"authors\":\"Yueyang Li ,&nbsp;Mingze Li ,&nbsp;Guohua Luan ,&nbsp;Qi Jing ,&nbsp;Xin Li ,&nbsp;Yuntao Li ,&nbsp;Laibin Zhang\",\"doi\":\"10.1016/j.ijthermalsci.2025.110118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water present at the bottom of crude oil storage tanks can lead to boilover phenomena during a fire, posing significant hazards. As the vessel containing crude oil, understanding the impact of tank boundary conditions on boilover provides theoretical support for tank design. This study investigates the effects of tank opening size, wall conditions, and dimensions through a series of experiments. The results show that reducing the tank opening size initially promotes, then inhibits combustion. When the opening is sufficiently small, the hot zone disappears, delaying the boilover onset time from 43.62 min to 130.35 min. The tank wall conditions significantly influence boilover behavior. When an interlayer is added to the tank wall and filled with air, it provides thermal insulation, reducing the boilover onset time to 40 % of that in an ordinary tank, while increasing the hot wave propagation rate by 1.5 times. When the interlayer is filled with static or flowing water, the formation of the hot zone is suppressed and no boilover occurs. The study shows that as tank diameter increases, boilover ejection intensity decreases, boilover onset time shortens (<span><math><mrow><msub><mi>t</mi><mi>b</mi></msub><mo>∝</mo><mfrac><mn>1</mn><msqrt><mi>D</mi></msqrt></mfrac></mrow></math></span>), and hot wave propagation rate increases before stabilizing. A theoretical model for hot wave propagation is derived from the energy conservation equation. A set of large-scale (<em>D</em>:1.5m) comparison experiments is conducted, and it is found that the hot zone temperature remains constant in the radial direction, but the hot zone temperature decreases instead of increasing compared to the small-scale experiments. For cases where smoke obscures the flame, a method for estimating the maximum flame height during the boiling period based on the solid flame radiation model is proposed. The results of the study help provide guidance for fire protection design and firefighting strategies in storage tanks.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"217 \",\"pages\":\"Article 110118\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925004417\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925004417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

原油储罐底部存在的水在火灾时可能导致沸腾现象,造成重大危害。作为装载原油的容器,了解罐身边界条件对翻越的影响为罐身设计提供了理论支持。本研究通过一系列的实验,探讨了罐口尺寸、壁面条件和尺寸的影响。结果表明,减小燃料箱开口尺寸先促进燃烧,后抑制燃烧。当开口足够小时,热区消失,使沸翻发生时间从43.62 min延迟到130.35 min。罐壁条件对沸翻行为有显著影响。在罐壁上加一层夹层,充入空气,起到隔热作用,使沸翻发生时间缩短至普通罐的40%,热波传播速率提高1.5倍。当层间充满静水或流水时,热区的形成受到抑制,不会发生沸腾。研究表明,随着罐径的增大,沸水喷射强度减小,沸水起爆时间(tb∝1D)缩短,热波传播速率增大后趋于稳定。由能量守恒方程导出了热波传播的理论模型。进行了一组大尺度(D:1.5m)对比实验,发现热区温度在径向上保持恒定,但与小尺度实验相比,热区温度不升反降。针对烟雾遮挡火焰的情况,提出了一种基于固体火焰辐射模型估算沸腾期最大火焰高度的方法。研究结果有助于指导储罐的防火设计和消防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the effect of storage tank boundary conditions on crude oil boilover fires
Water present at the bottom of crude oil storage tanks can lead to boilover phenomena during a fire, posing significant hazards. As the vessel containing crude oil, understanding the impact of tank boundary conditions on boilover provides theoretical support for tank design. This study investigates the effects of tank opening size, wall conditions, and dimensions through a series of experiments. The results show that reducing the tank opening size initially promotes, then inhibits combustion. When the opening is sufficiently small, the hot zone disappears, delaying the boilover onset time from 43.62 min to 130.35 min. The tank wall conditions significantly influence boilover behavior. When an interlayer is added to the tank wall and filled with air, it provides thermal insulation, reducing the boilover onset time to 40 % of that in an ordinary tank, while increasing the hot wave propagation rate by 1.5 times. When the interlayer is filled with static or flowing water, the formation of the hot zone is suppressed and no boilover occurs. The study shows that as tank diameter increases, boilover ejection intensity decreases, boilover onset time shortens (tb1D), and hot wave propagation rate increases before stabilizing. A theoretical model for hot wave propagation is derived from the energy conservation equation. A set of large-scale (D:1.5m) comparison experiments is conducted, and it is found that the hot zone temperature remains constant in the radial direction, but the hot zone temperature decreases instead of increasing compared to the small-scale experiments. For cases where smoke obscures the flame, a method for estimating the maximum flame height during the boiling period based on the solid flame radiation model is proposed. The results of the study help provide guidance for fire protection design and firefighting strategies in storage tanks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信