{"title":"棉花可持续生产的农艺和产业潜力研究进展","authors":"Samar Gogari, Radha","doi":"10.1016/j.pmpp.2025.102797","DOIUrl":null,"url":null,"abstract":"<div><div><em>Gossypium arboreum</em> (L.), an ancient diploid cotton species native to the Indian subcontinent, holds substantial agronomic and industrial value due to its resilience to biotic and abiotic stresses and its potential for sustainable cotton production in the face of climate change. This review synthesizes current research on the agronomic, industrial, biochemical, and pharmacological attributes of <em>G. arboreum</em>, emphasizing its relevance as a resilient and multifunctional crop. Unlike the widely cultivated <em>G. hirsutum</em>, the species is naturally adapted to rainfed and low-input agricultural systems, displaying strong resistance to drought, pests, and major cotton diseases, making it suitable for organic and environmentally sustainable farming. Despite limitations in fiber length and fineness compared to tetraploid species like <em>G. hirsutum</em>, it has industrial applications in absorbent cotton, handlooms, and coarse yarn, and is now gaining recognition in niche markets for its naturally pigmented varieties. Recent breeding programs have aimed to improve its fiber quality while maintaining stress tolerance. <em>G. arboreum</em> also maintains fiber quality under water-deficit conditions, reinforcing its value in stress-prone regions. Unique biochemical features, particularly its GaCYP722C-mediated strigolactone biosynthesis, distinguish it from other <em>Gossypium</em> species, offering novel genetic insights for plant growth regulation and soil symbiosis. Phytochemically, it is rich in flavonoids, tannins, and terpenoids, which contribute to antidiabetic, antioxidant, and wound-healing properties. This pharmacological potential, along with its compatibility with sustainable textile applications, expands its industrial scope. By integrating genetic, agronomic, and phytochemical perspectives, this review identifies <em>G. arboreum</em> as a vital genetic resource for cotton improvement and climate-resilient agriculture.</div></div>","PeriodicalId":20046,"journal":{"name":"Physiological and Molecular Plant Pathology","volume":"139 ","pages":"Article 102797"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gossypium arboreum (L.): A review on its agronomic and industrial potential for sustainable cotton production\",\"authors\":\"Samar Gogari, Radha\",\"doi\":\"10.1016/j.pmpp.2025.102797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Gossypium arboreum</em> (L.), an ancient diploid cotton species native to the Indian subcontinent, holds substantial agronomic and industrial value due to its resilience to biotic and abiotic stresses and its potential for sustainable cotton production in the face of climate change. This review synthesizes current research on the agronomic, industrial, biochemical, and pharmacological attributes of <em>G. arboreum</em>, emphasizing its relevance as a resilient and multifunctional crop. Unlike the widely cultivated <em>G. hirsutum</em>, the species is naturally adapted to rainfed and low-input agricultural systems, displaying strong resistance to drought, pests, and major cotton diseases, making it suitable for organic and environmentally sustainable farming. Despite limitations in fiber length and fineness compared to tetraploid species like <em>G. hirsutum</em>, it has industrial applications in absorbent cotton, handlooms, and coarse yarn, and is now gaining recognition in niche markets for its naturally pigmented varieties. Recent breeding programs have aimed to improve its fiber quality while maintaining stress tolerance. <em>G. arboreum</em> also maintains fiber quality under water-deficit conditions, reinforcing its value in stress-prone regions. Unique biochemical features, particularly its GaCYP722C-mediated strigolactone biosynthesis, distinguish it from other <em>Gossypium</em> species, offering novel genetic insights for plant growth regulation and soil symbiosis. Phytochemically, it is rich in flavonoids, tannins, and terpenoids, which contribute to antidiabetic, antioxidant, and wound-healing properties. This pharmacological potential, along with its compatibility with sustainable textile applications, expands its industrial scope. By integrating genetic, agronomic, and phytochemical perspectives, this review identifies <em>G. arboreum</em> as a vital genetic resource for cotton improvement and climate-resilient agriculture.</div></div>\",\"PeriodicalId\":20046,\"journal\":{\"name\":\"Physiological and Molecular Plant Pathology\",\"volume\":\"139 \",\"pages\":\"Article 102797\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Molecular Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S088557652500236X\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Molecular Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088557652500236X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Gossypium arboreum (L.): A review on its agronomic and industrial potential for sustainable cotton production
Gossypium arboreum (L.), an ancient diploid cotton species native to the Indian subcontinent, holds substantial agronomic and industrial value due to its resilience to biotic and abiotic stresses and its potential for sustainable cotton production in the face of climate change. This review synthesizes current research on the agronomic, industrial, biochemical, and pharmacological attributes of G. arboreum, emphasizing its relevance as a resilient and multifunctional crop. Unlike the widely cultivated G. hirsutum, the species is naturally adapted to rainfed and low-input agricultural systems, displaying strong resistance to drought, pests, and major cotton diseases, making it suitable for organic and environmentally sustainable farming. Despite limitations in fiber length and fineness compared to tetraploid species like G. hirsutum, it has industrial applications in absorbent cotton, handlooms, and coarse yarn, and is now gaining recognition in niche markets for its naturally pigmented varieties. Recent breeding programs have aimed to improve its fiber quality while maintaining stress tolerance. G. arboreum also maintains fiber quality under water-deficit conditions, reinforcing its value in stress-prone regions. Unique biochemical features, particularly its GaCYP722C-mediated strigolactone biosynthesis, distinguish it from other Gossypium species, offering novel genetic insights for plant growth regulation and soil symbiosis. Phytochemically, it is rich in flavonoids, tannins, and terpenoids, which contribute to antidiabetic, antioxidant, and wound-healing properties. This pharmacological potential, along with its compatibility with sustainable textile applications, expands its industrial scope. By integrating genetic, agronomic, and phytochemical perspectives, this review identifies G. arboreum as a vital genetic resource for cotton improvement and climate-resilient agriculture.
期刊介绍:
Physiological and Molecular Plant Pathology provides an International forum for original research papers, reviews, and commentaries on all aspects of the molecular biology, biochemistry, physiology, histology and cytology, genetics and evolution of plant-microbe interactions.
Papers on all kinds of infective pathogen, including viruses, prokaryotes, fungi, and nematodes, as well as mutualistic organisms such as Rhizobium and mycorrhyzal fungi, are acceptable as long as they have a bearing on the interaction between pathogen and plant.