使用大语言模型和多模态投资者情绪的多因素模型

IF 4.8 2区 经济学 Q1 BUSINESS, FINANCE
Junhuan Zhang , Ziyan Zhang , Jiaqi Wen
{"title":"使用大语言模型和多模态投资者情绪的多因素模型","authors":"Junhuan Zhang ,&nbsp;Ziyan Zhang ,&nbsp;Jiaqi Wen","doi":"10.1016/j.iref.2025.104281","DOIUrl":null,"url":null,"abstract":"<div><div>This study constructs multimodal investor sentiment indices using news and image data from the China News Service, covering the period from January 1, 2017, to December 31, 2024. We employ the RoBERTa model for text-based sentiment measurement and the Google Inception(v3) model for image-based sentiment measurement. We use a multimodal semantic correlation fusion model to integrate textual and visual sentiment features. These sentiment indices are categorised as industry-specific and market-wide investor sentiment, enabling separate analyses of their effects on stock markets. Furthermore, we develop a multifactor stock selection model that incorporates these sentiment indices with other microeconomic factors. Our findings demonstrate that multimodal sentiment analysis yields superior predictive accuracy. Industry-specific investor sentiment influences stock market returns, which in turn exacerbates changes in market-wide investor sentiment. Incorporating industry-specific sentiment into the multifactor stock selection model enhances portfolio returns, and combining market-wide sentiment with timing strategies further improves performance.</div></div>","PeriodicalId":14444,"journal":{"name":"International Review of Economics & Finance","volume":"102 ","pages":"Article 104281"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multifactor model using large language models and multimodal investor sentiment\",\"authors\":\"Junhuan Zhang ,&nbsp;Ziyan Zhang ,&nbsp;Jiaqi Wen\",\"doi\":\"10.1016/j.iref.2025.104281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study constructs multimodal investor sentiment indices using news and image data from the China News Service, covering the period from January 1, 2017, to December 31, 2024. We employ the RoBERTa model for text-based sentiment measurement and the Google Inception(v3) model for image-based sentiment measurement. We use a multimodal semantic correlation fusion model to integrate textual and visual sentiment features. These sentiment indices are categorised as industry-specific and market-wide investor sentiment, enabling separate analyses of their effects on stock markets. Furthermore, we develop a multifactor stock selection model that incorporates these sentiment indices with other microeconomic factors. Our findings demonstrate that multimodal sentiment analysis yields superior predictive accuracy. Industry-specific investor sentiment influences stock market returns, which in turn exacerbates changes in market-wide investor sentiment. Incorporating industry-specific sentiment into the multifactor stock selection model enhances portfolio returns, and combining market-wide sentiment with timing strategies further improves performance.</div></div>\",\"PeriodicalId\":14444,\"journal\":{\"name\":\"International Review of Economics & Finance\",\"volume\":\"102 \",\"pages\":\"Article 104281\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Economics & Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1059056025004447\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Economics & Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1059056025004447","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用中国新闻社的新闻和图像数据构建了多式联运投资者情绪指数,时间跨度为2017年1月1日至2024年12月31日。我们使用RoBERTa模型进行基于文本的情感测量,使用b谷歌Inception(v3)模型进行基于图像的情感测量。我们使用多模态语义关联融合模型来整合文本和视觉情感特征。这些情绪指数被分为特定行业和整个市场的投资者情绪,从而可以对它们对股市的影响进行单独分析。此外,我们开发了一个多因素选股模型,将这些情绪指数与其他微观经济因素结合起来。我们的研究结果表明,多模态情感分析产生了卓越的预测准确性。特定行业的投资者情绪影响股市回报,进而加剧了整个市场投资者情绪的变化。将行业特定情绪纳入多因素选股模型可提高投资组合收益,将市场整体情绪与择时策略相结合可进一步提高绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multifactor model using large language models and multimodal investor sentiment
This study constructs multimodal investor sentiment indices using news and image data from the China News Service, covering the period from January 1, 2017, to December 31, 2024. We employ the RoBERTa model for text-based sentiment measurement and the Google Inception(v3) model for image-based sentiment measurement. We use a multimodal semantic correlation fusion model to integrate textual and visual sentiment features. These sentiment indices are categorised as industry-specific and market-wide investor sentiment, enabling separate analyses of their effects on stock markets. Furthermore, we develop a multifactor stock selection model that incorporates these sentiment indices with other microeconomic factors. Our findings demonstrate that multimodal sentiment analysis yields superior predictive accuracy. Industry-specific investor sentiment influences stock market returns, which in turn exacerbates changes in market-wide investor sentiment. Incorporating industry-specific sentiment into the multifactor stock selection model enhances portfolio returns, and combining market-wide sentiment with timing strategies further improves performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
2.20%
发文量
253
期刊介绍: The International Review of Economics & Finance (IREF) is a scholarly journal devoted to the publication of high quality theoretical and empirical articles in all areas of international economics, macroeconomics and financial economics. Contributions that facilitate the communications between the real and the financial sectors of the economy are of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信