有序介孔MoC和Pt-MoC作为光催化制氢的共催化剂

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tingting Gu , Jie Chen , Wu Zou, Xiaomei Yang, Chen Shao, Shengzhou Cai, Xiaozhong Wang, Qingfeng Yang, Yingtao Liu, Xin Wang, Xiaoyong Lai
{"title":"有序介孔MoC和Pt-MoC作为光催化制氢的共催化剂","authors":"Tingting Gu ,&nbsp;Jie Chen ,&nbsp;Wu Zou,&nbsp;Xiaomei Yang,&nbsp;Chen Shao,&nbsp;Shengzhou Cai,&nbsp;Xiaozhong Wang,&nbsp;Qingfeng Yang,&nbsp;Yingtao Liu,&nbsp;Xin Wang,&nbsp;Xiaoyong Lai","doi":"10.1016/j.apsusc.2025.163930","DOIUrl":null,"url":null,"abstract":"<div><div>Slow reaction kinetics intrinsically limits the efficiency of semiconductor-based photocatalytic hydrogen generation and suitable cocatalysts are highly desired. Molybdenum carbide (MoC) is viewed as a promising Pt-like catalyst or support for hydrogen evolution reaction but usually suffers from low active surface area in traditional high-temperature carburization. Herein, we present an ordered mesoporous MoC featuring both large mesopores (11 nm) and ultrathin frameworks (∼5 nm), which provide a substantial surface area (108 m<sup>2</sup>·g<sup>−1</sup>) for loading Pt co-catalysts and constructing an efficient heterostructure in combination with ultrathin ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) nanosheets. The resultant Pt-MoC@ZIS heterostructure showed a significantly improved hydrogen evolution (0.357 mmol·h<sup>−1</sup>) with an apparent quantum efficiency (AQE) of 85.9% at 395 nm and decreased Pt dose (0.11 wt%) over the directly Pt-loaded ZIS, which should be attributed to the enhanced mass activity of Pt well-dispersed on conductive MoC frameworks for facilizing surface reaction, boosted carrier separation and reduced ZIS aggregation from the heterostructure for inhibiting bulk and surface recombination. This study may offer valuable insights for developing efficient low Pt or even Pt-free photocatalysts.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163930"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordered mesoporous MoC and Pt-MoC as co-catalysts for photocatalytic hydrogen production\",\"authors\":\"Tingting Gu ,&nbsp;Jie Chen ,&nbsp;Wu Zou,&nbsp;Xiaomei Yang,&nbsp;Chen Shao,&nbsp;Shengzhou Cai,&nbsp;Xiaozhong Wang,&nbsp;Qingfeng Yang,&nbsp;Yingtao Liu,&nbsp;Xin Wang,&nbsp;Xiaoyong Lai\",\"doi\":\"10.1016/j.apsusc.2025.163930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Slow reaction kinetics intrinsically limits the efficiency of semiconductor-based photocatalytic hydrogen generation and suitable cocatalysts are highly desired. Molybdenum carbide (MoC) is viewed as a promising Pt-like catalyst or support for hydrogen evolution reaction but usually suffers from low active surface area in traditional high-temperature carburization. Herein, we present an ordered mesoporous MoC featuring both large mesopores (11 nm) and ultrathin frameworks (∼5 nm), which provide a substantial surface area (108 m<sup>2</sup>·g<sup>−1</sup>) for loading Pt co-catalysts and constructing an efficient heterostructure in combination with ultrathin ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) nanosheets. The resultant Pt-MoC@ZIS heterostructure showed a significantly improved hydrogen evolution (0.357 mmol·h<sup>−1</sup>) with an apparent quantum efficiency (AQE) of 85.9% at 395 nm and decreased Pt dose (0.11 wt%) over the directly Pt-loaded ZIS, which should be attributed to the enhanced mass activity of Pt well-dispersed on conductive MoC frameworks for facilizing surface reaction, boosted carrier separation and reduced ZIS aggregation from the heterostructure for inhibiting bulk and surface recombination. This study may offer valuable insights for developing efficient low Pt or even Pt-free photocatalysts.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"710 \",\"pages\":\"Article 163930\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225016459\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016459","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

缓慢的反应动力学本质上限制了半导体光催化制氢的效率,因此迫切需要合适的助催化剂。碳化钼(MoC)是一种极具发展前景的铂类催化剂或析氢载体,但在传统的高温渗碳工艺中,其活性表面积较低。在此,我们提出了一种有序的介孔MoC,具有大介孔(11 nm)和超薄框架(~ 5 nm),为加载Pt共催化剂和构建与超薄ZnIn2S4 (ZIS)纳米片结合的高效异质结构提供了可观的表面积(108 m2·g−1)。与直接负载Pt的ZIS相比,得到的Pt-MoC@ZIS异质结构显著改善了析氢(0.357 mmol·h−1),在395 nm处的表观量子效率(AQE)为85.9 %,Pt剂量(0.11 wt%)降低,这应归因于Pt在导电MoC框架上分散良好,促进了表面反应的质量活性增强。促进了载流子的分离,减少了异质结构中ZIS的聚集,抑制了体积和表面的复合。该研究为开发高效的低铂甚至无铂光催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ordered mesoporous MoC and Pt-MoC as co-catalysts for photocatalytic hydrogen production

Ordered mesoporous MoC and Pt-MoC as co-catalysts for photocatalytic hydrogen production

Ordered mesoporous MoC and Pt-MoC as co-catalysts for photocatalytic hydrogen production
Slow reaction kinetics intrinsically limits the efficiency of semiconductor-based photocatalytic hydrogen generation and suitable cocatalysts are highly desired. Molybdenum carbide (MoC) is viewed as a promising Pt-like catalyst or support for hydrogen evolution reaction but usually suffers from low active surface area in traditional high-temperature carburization. Herein, we present an ordered mesoporous MoC featuring both large mesopores (11 nm) and ultrathin frameworks (∼5 nm), which provide a substantial surface area (108 m2·g−1) for loading Pt co-catalysts and constructing an efficient heterostructure in combination with ultrathin ZnIn2S4 (ZIS) nanosheets. The resultant Pt-MoC@ZIS heterostructure showed a significantly improved hydrogen evolution (0.357 mmol·h−1) with an apparent quantum efficiency (AQE) of 85.9% at 395 nm and decreased Pt dose (0.11 wt%) over the directly Pt-loaded ZIS, which should be attributed to the enhanced mass activity of Pt well-dispersed on conductive MoC frameworks for facilizing surface reaction, boosted carrier separation and reduced ZIS aggregation from the heterostructure for inhibiting bulk and surface recombination. This study may offer valuable insights for developing efficient low Pt or even Pt-free photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信