通过碳掺杂克服增材制造亚稳态高熵合金的强度-延性权衡

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qunhua Tang, Shilong Peng, Can Lin, Yixi Hou, Li Chen, Zhanjiang Li
{"title":"通过碳掺杂克服增材制造亚稳态高熵合金的强度-延性权衡","authors":"Qunhua Tang, Shilong Peng, Can Lin, Yixi Hou, Li Chen, Zhanjiang Li","doi":"10.1016/j.jallcom.2025.181960","DOIUrl":null,"url":null,"abstract":"Interstitial carbon atom is key in modifying microstructures and enhancing mechanical properties of metastable high-entropy alloys. To hardness this potential, the microstructure, phase stability, stacking fault energy (SFE), and room-temperature mechanical properties of carbon-doped (Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>97-x</sub>Si<sub>3</sub>C<sub>x</sub> (x = 0~5<!-- --> <!-- -->at.%) alloys fabricated by selective laser melting (SLM) were systematically investigated. Carbon addition can stabilize FCC solid solution structure and increase SFE, resulting into a deformation-induced transformation from being TRIP-dominated (x = 0, 1<!-- --> <!-- -->at.%) to being TWIP-dominated (x = 3, 5<!-- --> <!-- -->at.%). Carbon interstitial solid solution strengthening accounts for ~72% contribution to yield strength increment when carbon concentration reaches 3<!-- --> <!-- -->at.%. Thus, the (Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>94</sub>Si<sub>3</sub>C<sub>3</sub> alloy, compared to its carbon-free counterpart, exhibits remarkable simultaneous enhancements in mechanical properties, with yield strength of 615<!-- --> <!-- -->MPa, ultimate tensile strength of 960<!-- --> <!-- -->MPa, and fracture elongation of 38%. This suggests a superior strength-ductility synergy over most SLMed FCC high-entropy alloys and conventional alloys. Here, incorporating small-sized non-metallic elements into metastable high-entropy alloys through additive manufacturing provides an effective strategy to overcome the strength-ductility trade-off.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"2 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming the strength-ductility trade-off of additively manufactured metastable high-entropy alloy via carbon doping\",\"authors\":\"Qunhua Tang, Shilong Peng, Can Lin, Yixi Hou, Li Chen, Zhanjiang Li\",\"doi\":\"10.1016/j.jallcom.2025.181960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interstitial carbon atom is key in modifying microstructures and enhancing mechanical properties of metastable high-entropy alloys. To hardness this potential, the microstructure, phase stability, stacking fault energy (SFE), and room-temperature mechanical properties of carbon-doped (Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>97-x</sub>Si<sub>3</sub>C<sub>x</sub> (x = 0~5<!-- --> <!-- -->at.%) alloys fabricated by selective laser melting (SLM) were systematically investigated. Carbon addition can stabilize FCC solid solution structure and increase SFE, resulting into a deformation-induced transformation from being TRIP-dominated (x = 0, 1<!-- --> <!-- -->at.%) to being TWIP-dominated (x = 3, 5<!-- --> <!-- -->at.%). Carbon interstitial solid solution strengthening accounts for ~72% contribution to yield strength increment when carbon concentration reaches 3<!-- --> <!-- -->at.%. Thus, the (Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>94</sub>Si<sub>3</sub>C<sub>3</sub> alloy, compared to its carbon-free counterpart, exhibits remarkable simultaneous enhancements in mechanical properties, with yield strength of 615<!-- --> <!-- -->MPa, ultimate tensile strength of 960<!-- --> <!-- -->MPa, and fracture elongation of 38%. This suggests a superior strength-ductility synergy over most SLMed FCC high-entropy alloys and conventional alloys. Here, incorporating small-sized non-metallic elements into metastable high-entropy alloys through additive manufacturing provides an effective strategy to overcome the strength-ductility trade-off.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.181960\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181960","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

间隙碳原子是改变亚稳态高熵合金组织和提高合金力学性能的关键。针对这一潜在的硬度,系统地研究了选择性激光熔化(SLM)制备的掺碳(Fe50Mn30Co10Cr10)97-xSi3Cx (x = 0~5 at.%)合金的显微组织、相稳定性、层错能(SFE)和室温力学性能。碳的加入可以稳定FCC固溶体结构,提高SFE,使FCC从以trip为主(x = 0.1 at.%)转变为以twip为主(x = 3.5 at.%)。当碳浓度达到3 at.%时,碳间隙固溶体强化对屈服强度增量的贡献约为72%。结果表明,与无碳合金相比,(Fe50Mn30Co10Cr10)94Si3C3合金的屈服强度为615 MPa,极限抗拉强度为960 MPa,断裂伸长率为38%,力学性能显著提高。这表明,与大多数SLMed FCC高熵合金和常规合金相比,SLMed FCC高熵合金具有优越的强度-延展性协同作用。在这里,通过增材制造将小尺寸的非金属元素加入亚稳态高熵合金中提供了一种克服强度-延性权衡的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming the strength-ductility trade-off of additively manufactured metastable high-entropy alloy via carbon doping
Interstitial carbon atom is key in modifying microstructures and enhancing mechanical properties of metastable high-entropy alloys. To hardness this potential, the microstructure, phase stability, stacking fault energy (SFE), and room-temperature mechanical properties of carbon-doped (Fe50Mn30Co10Cr10)97-xSi3Cx (x = 0~5 at.%) alloys fabricated by selective laser melting (SLM) were systematically investigated. Carbon addition can stabilize FCC solid solution structure and increase SFE, resulting into a deformation-induced transformation from being TRIP-dominated (x = 0, 1 at.%) to being TWIP-dominated (x = 3, 5 at.%). Carbon interstitial solid solution strengthening accounts for ~72% contribution to yield strength increment when carbon concentration reaches 3 at.%. Thus, the (Fe50Mn30Co10Cr10)94Si3C3 alloy, compared to its carbon-free counterpart, exhibits remarkable simultaneous enhancements in mechanical properties, with yield strength of 615 MPa, ultimate tensile strength of 960 MPa, and fracture elongation of 38%. This suggests a superior strength-ductility synergy over most SLMed FCC high-entropy alloys and conventional alloys. Here, incorporating small-sized non-metallic elements into metastable high-entropy alloys through additive manufacturing provides an effective strategy to overcome the strength-ductility trade-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信