{"title":"高效钙钛矿太阳能电池用芳胺基有机空穴传输材料的分子工程研究","authors":"Jiazhi Meng, Guoquan Xia, Xiaolan Huang, Yu Gao, Zhuo Peng, Xu-Hui Zhu, Feiyu Kang, Guodan Wei","doi":"10.1016/j.jallcom.2025.181954","DOIUrl":null,"url":null,"abstract":"The development of high-performance hole-transport materials (HTMs) with excellent stability for perovskite solar cells (PSCs) is in great demand for pushing their large-scale applications. Herein, we report the synthesis of aromatic triamine-based HTMs, specifically 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(4-methoxyphenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (<strong>XL6</strong>), 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (<strong>XL7</strong>), and 6-(4-((4-(6-(diphenylamino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-diphenylnaphthalen-2-amine (<strong>XL8</strong>). These compounds are synthesized with ease and exhibit high solubility in organic solvents, yielding analytically pure materials. Notably, <strong>XL8</strong> demonstrates a high glass-transition temperature of 140°C and a hole mobility in the range of (1.27-5.54) × 10<sup>-3</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> under an electric field of (1-4) × 10<sup>5<!-- --> </sup>V<!-- --> <!-- -->cm<sup>-1</sup>. The absence of electron-donating methoxy groups in XL8 results in a lower highest occupied molecular orbital (HOMO) level of -5.36<!-- --> <!-- -->eV, which contributes to its highly efficient charge extraction from photoexcited perovskites. Consequently, inverted PSCs incorporating <strong>XL8</strong> as the HTM achieve a power conversion efficiency (PCE) of 21.74%, with an open-circuit voltage (<em>V</em><sub><em>OC</em></sub>) of 1.09<!-- --> <!-- -->V, a short-circuit current density (<em>J</em><sub><em>SC</em></sub>) of 24.80<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, and a fill factor (<em>FF</em>) of 80.19%. This performance surpasses that of devices based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), which exhibit a PCE of 17.87%, <em>V</em><sub><em>O</em></sub> of 1.05<!-- --> <!-- -->V, <em>J</em><sub><em>SC</em></sub> of 23.2<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, and FF of 73.37%.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular engineering of arylamine-based organic hole-transport materials for efficient perovskite solar cells\",\"authors\":\"Jiazhi Meng, Guoquan Xia, Xiaolan Huang, Yu Gao, Zhuo Peng, Xu-Hui Zhu, Feiyu Kang, Guodan Wei\",\"doi\":\"10.1016/j.jallcom.2025.181954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-performance hole-transport materials (HTMs) with excellent stability for perovskite solar cells (PSCs) is in great demand for pushing their large-scale applications. Herein, we report the synthesis of aromatic triamine-based HTMs, specifically 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(4-methoxyphenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (<strong>XL6</strong>), 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (<strong>XL7</strong>), and 6-(4-((4-(6-(diphenylamino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-diphenylnaphthalen-2-amine (<strong>XL8</strong>). These compounds are synthesized with ease and exhibit high solubility in organic solvents, yielding analytically pure materials. Notably, <strong>XL8</strong> demonstrates a high glass-transition temperature of 140°C and a hole mobility in the range of (1.27-5.54) × 10<sup>-3</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> under an electric field of (1-4) × 10<sup>5<!-- --> </sup>V<!-- --> <!-- -->cm<sup>-1</sup>. The absence of electron-donating methoxy groups in XL8 results in a lower highest occupied molecular orbital (HOMO) level of -5.36<!-- --> <!-- -->eV, which contributes to its highly efficient charge extraction from photoexcited perovskites. Consequently, inverted PSCs incorporating <strong>XL8</strong> as the HTM achieve a power conversion efficiency (PCE) of 21.74%, with an open-circuit voltage (<em>V</em><sub><em>OC</em></sub>) of 1.09<!-- --> <!-- -->V, a short-circuit current density (<em>J</em><sub><em>SC</em></sub>) of 24.80<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, and a fill factor (<em>FF</em>) of 80.19%. This performance surpasses that of devices based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), which exhibit a PCE of 17.87%, <em>V</em><sub><em>O</em></sub> of 1.05<!-- --> <!-- -->V, <em>J</em><sub><em>SC</em></sub> of 23.2<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, and FF of 73.37%.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.181954\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181954","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发具有优异稳定性的钙钛矿太阳能电池(PSCs)的高性能空穴传输材料(HTMs)是推动其大规模应用的巨大需求。本文报道了芳香族三胺基HTMs的合成,具体为6-(4-(4-(6-(6-(2- 4-甲氧基苯基)氨基)萘-2-基)苯基(4-甲氧基苯基)氨基)苯基(苯基)苯基)苯基)- n, n-(4-(4-(6-(2- 4-甲氧基苯基)氨基)萘-2-胺(XL6), 6-(4-(6-(2- 4-甲氧基苯基)氨基)苯基(苯基)氨基)苯基)苯基)- n, n-(4-(6-(6-(二苯基苯基)萘-2-胺(XL7)和6-(4-(4-(6-(二苯基苯基)萘-2-胺)(苯基)苯基)苯基)- n, n-二苯基萘-2-胺(XL8)。这些化合物很容易合成,并且在有机溶剂中具有高溶解度,产生分析纯的材料。值得注意的是,在(1-4)× 105 V cm-1的电场作用下,XL8的玻璃化转变温度高达140℃,空穴迁移率在(1.27-5.54)× 10-3 cm2 V-1 s-1范围内。由于没有给电子的甲氧基,XL8的最高已占据分子轨道(HOMO)能级较低,为-5.36 eV,这有助于XL8从光激发钙钛矿中高效提取电荷。因此,采用XL8作为HTM的倒置PSCs的功率转换效率(PCE)为21.74%,开路电压(VOC)为1.09 V,短路电流密度(JSC)为24.80 mA cm-2,填充因子(FF)为80.19%。该性能优于基于聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)的器件,其PCE为17.87%,VO为1.05 V, JSC为23.2 mA cm-2, FF为73.37%。
Molecular engineering of arylamine-based organic hole-transport materials for efficient perovskite solar cells
The development of high-performance hole-transport materials (HTMs) with excellent stability for perovskite solar cells (PSCs) is in great demand for pushing their large-scale applications. Herein, we report the synthesis of aromatic triamine-based HTMs, specifically 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(4-methoxyphenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (XL6), 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-bis(4-methoxyphenyl)naphthalen-2-amine (XL7), and 6-(4-((4-(6-(diphenylamino)naphthalen-2-yl)phenyl)(phenyl)amino)phenyl)-N,N-diphenylnaphthalen-2-amine (XL8). These compounds are synthesized with ease and exhibit high solubility in organic solvents, yielding analytically pure materials. Notably, XL8 demonstrates a high glass-transition temperature of 140°C and a hole mobility in the range of (1.27-5.54) × 10-3 cm2 V-1 s-1 under an electric field of (1-4) × 105 V cm-1. The absence of electron-donating methoxy groups in XL8 results in a lower highest occupied molecular orbital (HOMO) level of -5.36 eV, which contributes to its highly efficient charge extraction from photoexcited perovskites. Consequently, inverted PSCs incorporating XL8 as the HTM achieve a power conversion efficiency (PCE) of 21.74%, with an open-circuit voltage (VOC) of 1.09 V, a short-circuit current density (JSC) of 24.80 mA cm-2, and a fill factor (FF) of 80.19%. This performance surpasses that of devices based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), which exhibit a PCE of 17.87%, VO of 1.05 V, JSC of 23.2 mA cm-2, and FF of 73.37%.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.