{"title":"激光诱导热解的辐射冷却和太阳能加热功能的整体集成","authors":"Yeongju Jung, Seongmin Jeong, Gyu Heo, Kyung Rok Pyun, Seok Hwan Choi, Junhyuk Bang, Jae Gun Lee, Hongchan Kim, Jaeho Shin, Sukjoon Hong, Jinwoo Lee, Daeyeon Won, Jaeman Song, Seung Hwan Ko","doi":"10.1016/j.joule.2025.102007","DOIUrl":null,"url":null,"abstract":"Conventional thermal management systems contribute significantly to environmental challenges, motivating the exploration of zero-energy techniques such as radiative cooling and solar heating. In this study, an innovative strategy is introduced to transform transparent polydimethylsiloxane into a versatile material via laser-induced pyrolysis. By precisely controlling laser intensity, the material is engineered for multi-thermal management, exhibiting high reflectivity and thermal emission for effective cooling under high-energy processing and strong solar absorption for notable heating under low-energy conditions. Simulation results indicate that applying this material to building roofs could reduce annual energy consumption by up to 26.5%. Moreover, its capability to form Janus structures and all-laser-patterned solar thermoelectric devices highlights its potential for sustainable technologies. This work represents a pioneering strategy in sustainable thermal management for cooling and heating, demonstrating a novel use of a monolith material and a facile fabrication technique and offering a promising solution to global environmental challenges.","PeriodicalId":343,"journal":{"name":"Joule","volume":"635 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic integration of radiative cooling and solar heating functionalities by laser-induced pyrolysis\",\"authors\":\"Yeongju Jung, Seongmin Jeong, Gyu Heo, Kyung Rok Pyun, Seok Hwan Choi, Junhyuk Bang, Jae Gun Lee, Hongchan Kim, Jaeho Shin, Sukjoon Hong, Jinwoo Lee, Daeyeon Won, Jaeman Song, Seung Hwan Ko\",\"doi\":\"10.1016/j.joule.2025.102007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional thermal management systems contribute significantly to environmental challenges, motivating the exploration of zero-energy techniques such as radiative cooling and solar heating. In this study, an innovative strategy is introduced to transform transparent polydimethylsiloxane into a versatile material via laser-induced pyrolysis. By precisely controlling laser intensity, the material is engineered for multi-thermal management, exhibiting high reflectivity and thermal emission for effective cooling under high-energy processing and strong solar absorption for notable heating under low-energy conditions. Simulation results indicate that applying this material to building roofs could reduce annual energy consumption by up to 26.5%. Moreover, its capability to form Janus structures and all-laser-patterned solar thermoelectric devices highlights its potential for sustainable technologies. This work represents a pioneering strategy in sustainable thermal management for cooling and heating, demonstrating a novel use of a monolith material and a facile fabrication technique and offering a promising solution to global environmental challenges.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"635 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Monolithic integration of radiative cooling and solar heating functionalities by laser-induced pyrolysis
Conventional thermal management systems contribute significantly to environmental challenges, motivating the exploration of zero-energy techniques such as radiative cooling and solar heating. In this study, an innovative strategy is introduced to transform transparent polydimethylsiloxane into a versatile material via laser-induced pyrolysis. By precisely controlling laser intensity, the material is engineered for multi-thermal management, exhibiting high reflectivity and thermal emission for effective cooling under high-energy processing and strong solar absorption for notable heating under low-energy conditions. Simulation results indicate that applying this material to building roofs could reduce annual energy consumption by up to 26.5%. Moreover, its capability to form Janus structures and all-laser-patterned solar thermoelectric devices highlights its potential for sustainable technologies. This work represents a pioneering strategy in sustainable thermal management for cooling and heating, demonstrating a novel use of a monolith material and a facile fabrication technique and offering a promising solution to global environmental challenges.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.