用于高功率密度热光伏的高发射率,热稳定性强的发射器

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-07-16 DOI:10.1016/j.joule.2025.102005
Minok Park , Shomik Verma , Alina LaPotin , Dustin P. Nizamian , Ravi Prasher , Asegun Henry , Sean D. Lubner , Costas P. Grigoropoulos , Vassilia Zorba
{"title":"用于高功率密度热光伏的高发射率,热稳定性强的发射器","authors":"Minok Park ,&nbsp;Shomik Verma ,&nbsp;Alina LaPotin ,&nbsp;Dustin P. Nizamian ,&nbsp;Ravi Prasher ,&nbsp;Asegun Henry ,&nbsp;Sean D. Lubner ,&nbsp;Costas P. Grigoropoulos ,&nbsp;Vassilia Zorba","doi":"10.1016/j.joule.2025.102005","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal radiative energy transport is essential for high-temperature energy harvesting technologies, including thermophotovoltaics (TPVs) and grid-scale thermal energy storage. However, the inherently low emissivity of conventional high-temperature materials constrains radiative energy transfer, thereby limiting system performance and technoeconomic viability. Here, we demonstrate ultrafast femtosecond laser-material interactions to transform diverse materials into near-blackbody surfaces with broadband spectral emissivity above 0.96. This enhancement arises from hierarchically engineered light-trapping microstructures enriched with nanoscale features, effectively decoupling surface optical properties from bulk thermomechanical properties. These laser-blackened surfaces (LaBS) exhibit exceptional thermal stability, retaining high emissivity for over 100 h at temperatures exceeding 1,000°C, even in oxidizing environments. When applied as TPV thermal emitters, Ta LaBS double electrical power output from 2.19 to 4.10 W cm<sup>−2</sup> at 2,200°C while sustaining TPV conversion efficiencies above 30%. This versatile, largely material-independent technique offers a scalable and economically viable pathway to enhance emissivity for advanced thermal energy applications.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 7","pages":"Article 102005"},"PeriodicalIF":35.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-emissivity, thermally robust emitters for high power density thermophotovoltaics\",\"authors\":\"Minok Park ,&nbsp;Shomik Verma ,&nbsp;Alina LaPotin ,&nbsp;Dustin P. Nizamian ,&nbsp;Ravi Prasher ,&nbsp;Asegun Henry ,&nbsp;Sean D. Lubner ,&nbsp;Costas P. Grigoropoulos ,&nbsp;Vassilia Zorba\",\"doi\":\"10.1016/j.joule.2025.102005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal radiative energy transport is essential for high-temperature energy harvesting technologies, including thermophotovoltaics (TPVs) and grid-scale thermal energy storage. However, the inherently low emissivity of conventional high-temperature materials constrains radiative energy transfer, thereby limiting system performance and technoeconomic viability. Here, we demonstrate ultrafast femtosecond laser-material interactions to transform diverse materials into near-blackbody surfaces with broadband spectral emissivity above 0.96. This enhancement arises from hierarchically engineered light-trapping microstructures enriched with nanoscale features, effectively decoupling surface optical properties from bulk thermomechanical properties. These laser-blackened surfaces (LaBS) exhibit exceptional thermal stability, retaining high emissivity for over 100 h at temperatures exceeding 1,000°C, even in oxidizing environments. When applied as TPV thermal emitters, Ta LaBS double electrical power output from 2.19 to 4.10 W cm<sup>−2</sup> at 2,200°C while sustaining TPV conversion efficiencies above 30%. This versatile, largely material-independent technique offers a scalable and economically viable pathway to enhance emissivity for advanced thermal energy applications.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"9 7\",\"pages\":\"Article 102005\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435125001862\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125001862","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热辐射能量传输对于高温能量收集技术至关重要,包括热光伏(TPVs)和电网规模的热能储存。然而,传统高温材料固有的低发射率限制了辐射能量的传递,从而限制了系统的性能和技术经济可行性。在这里,我们展示了超快飞秒激光与材料的相互作用,将各种材料转化为宽带光谱发射率高于0.96的近黑体表面。这种增强来自于分层设计的具有纳米级特征的光捕获微结构,有效地将表面光学性质与体热力学性质解耦。这些激光黑化的表面(实验室)表现出优异的热稳定性,即使在氧化环境中,在超过1000°C的温度下也能保持100小时以上的高发射率。当应用于TPV热辐射器时,Ta LaBS在2200°C下将电功率输出从2.19增加到4.10 W cm−2,同时保持TPV转换效率超过30%。这种多用途的、很大程度上与材料无关的技术为提高先进热能应用的发射率提供了一种可扩展且经济可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-emissivity, thermally robust emitters for high power density thermophotovoltaics

High-emissivity, thermally robust emitters for high power density thermophotovoltaics

High-emissivity, thermally robust emitters for high power density thermophotovoltaics
Thermal radiative energy transport is essential for high-temperature energy harvesting technologies, including thermophotovoltaics (TPVs) and grid-scale thermal energy storage. However, the inherently low emissivity of conventional high-temperature materials constrains radiative energy transfer, thereby limiting system performance and technoeconomic viability. Here, we demonstrate ultrafast femtosecond laser-material interactions to transform diverse materials into near-blackbody surfaces with broadband spectral emissivity above 0.96. This enhancement arises from hierarchically engineered light-trapping microstructures enriched with nanoscale features, effectively decoupling surface optical properties from bulk thermomechanical properties. These laser-blackened surfaces (LaBS) exhibit exceptional thermal stability, retaining high emissivity for over 100 h at temperatures exceeding 1,000°C, even in oxidizing environments. When applied as TPV thermal emitters, Ta LaBS double electrical power output from 2.19 to 4.10 W cm−2 at 2,200°C while sustaining TPV conversion efficiencies above 30%. This versatile, largely material-independent technique offers a scalable and economically viable pathway to enhance emissivity for advanced thermal energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信