Ning Qing Liu, Mikhail Magnitov, Marijne M G A Schijns, Tom van Schaik, Hans Teunissen, Bas van Steensel, Elzo de Wit
{"title":"挤压喷泉受到依赖于wapl的黏结物释放和CTCF屏障的限制","authors":"Ning Qing Liu, Mikhail Magnitov, Marijne M G A Schijns, Tom van Schaik, Hans Teunissen, Bas van Steensel, Elzo de Wit","doi":"10.1093/nar/gkaf549","DOIUrl":null,"url":null,"abstract":"Interphase chromosomes are mainly shaped by loop extrusion and compartmentalisation mechanisms. However, their temporal component and cause-effect relationships remain largely unknown. In this study, we use acute degradation of WAPL, CTCF and cohesin in mouse embryonic stem cells to investigate the dynamics of loop extrusion and its relationship to compartmentalisation. Stabilisation of cohesin on chromatin by depletion of WAPL results in the formation of extended loops and promotes looping between non-convergent CTCF sites. Loss of WAPL also results in a rapid decrease in compartmentalisation, which is reversed by subsequent removal of cohesin, directly demonstrating the opposite role of extrusion on compartmentalisation. Using combined depletion of WAPL and CTCF, we identify fountains, a feature of chromosome organisation that emanates from enhancer regions and exhibits strong cohesin binding. Fountains form rapidly after mitosis and early in mammalian development. Cohesin depletion confirms that fountains are cohesin dependent, and their disruption leads to the downregulation of fountain-proximal genes, suggesting a role in gene regulation. Taken together, by exploiting the temporal precision of acute protein depletion, our study reveals fountains as an extrusion-mediated, fast-forming feature of 3D genome organisation.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"36 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers\",\"authors\":\"Ning Qing Liu, Mikhail Magnitov, Marijne M G A Schijns, Tom van Schaik, Hans Teunissen, Bas van Steensel, Elzo de Wit\",\"doi\":\"10.1093/nar/gkaf549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interphase chromosomes are mainly shaped by loop extrusion and compartmentalisation mechanisms. However, their temporal component and cause-effect relationships remain largely unknown. In this study, we use acute degradation of WAPL, CTCF and cohesin in mouse embryonic stem cells to investigate the dynamics of loop extrusion and its relationship to compartmentalisation. Stabilisation of cohesin on chromatin by depletion of WAPL results in the formation of extended loops and promotes looping between non-convergent CTCF sites. Loss of WAPL also results in a rapid decrease in compartmentalisation, which is reversed by subsequent removal of cohesin, directly demonstrating the opposite role of extrusion on compartmentalisation. Using combined depletion of WAPL and CTCF, we identify fountains, a feature of chromosome organisation that emanates from enhancer regions and exhibits strong cohesin binding. Fountains form rapidly after mitosis and early in mammalian development. Cohesin depletion confirms that fountains are cohesin dependent, and their disruption leads to the downregulation of fountain-proximal genes, suggesting a role in gene regulation. Taken together, by exploiting the temporal precision of acute protein depletion, our study reveals fountains as an extrusion-mediated, fast-forming feature of 3D genome organisation.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf549\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf549","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers
Interphase chromosomes are mainly shaped by loop extrusion and compartmentalisation mechanisms. However, their temporal component and cause-effect relationships remain largely unknown. In this study, we use acute degradation of WAPL, CTCF and cohesin in mouse embryonic stem cells to investigate the dynamics of loop extrusion and its relationship to compartmentalisation. Stabilisation of cohesin on chromatin by depletion of WAPL results in the formation of extended loops and promotes looping between non-convergent CTCF sites. Loss of WAPL also results in a rapid decrease in compartmentalisation, which is reversed by subsequent removal of cohesin, directly demonstrating the opposite role of extrusion on compartmentalisation. Using combined depletion of WAPL and CTCF, we identify fountains, a feature of chromosome organisation that emanates from enhancer regions and exhibits strong cohesin binding. Fountains form rapidly after mitosis and early in mammalian development. Cohesin depletion confirms that fountains are cohesin dependent, and their disruption leads to the downregulation of fountain-proximal genes, suggesting a role in gene regulation. Taken together, by exploiting the temporal precision of acute protein depletion, our study reveals fountains as an extrusion-mediated, fast-forming feature of 3D genome organisation.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.