加强洪水预报:低地喀斯特地区地下水洪水的综合神经网络方法

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ruhhee Tabbussum , Bidroha Basu , Patrick Morrissey , Laurence Gill
{"title":"加强洪水预报:低地喀斯特地区地下水洪水的综合神经网络方法","authors":"Ruhhee Tabbussum ,&nbsp;Bidroha Basu ,&nbsp;Patrick Morrissey ,&nbsp;Laurence Gill","doi":"10.1016/j.envsoft.2025.106591","DOIUrl":null,"url":null,"abstract":"<div><div>This study has developed forecast models for groundwater flooding in lowland karst region of south Galway (Ireland). It employed neural network models incorporating Bayesian regularization and Scaled Conjugate Gradient training algorithms for model training and optimization. Training datasets include years of field data and outputs from a calibrated hydraulic/hydrological karst model. The Bayesian model achieves Nash-Sutcliffe Efficiency (NSE) of 0.95 up to 45 days ahead, whilst the Scaled Conjugate Gradient models outperform this, maintaining NSE of 0.98 up to 20 days and 0.95 up to 60 days ahead, with reduced training time compared to Bayesian models. Both models exhibit high performance with a Coefficient of Correlation (r) value of 0.98 up to 60 days ahead and Kling Gupta Efficiency of 0.96 up to 15 days ahead. The research shows that integrating diverse data sources and using both daily and hourly models improve such a flood warning system's resilience and reliability.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106591"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing flood forecasts: A comprehensive neural network approach for groundwater flooding in lowland karst areas\",\"authors\":\"Ruhhee Tabbussum ,&nbsp;Bidroha Basu ,&nbsp;Patrick Morrissey ,&nbsp;Laurence Gill\",\"doi\":\"10.1016/j.envsoft.2025.106591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study has developed forecast models for groundwater flooding in lowland karst region of south Galway (Ireland). It employed neural network models incorporating Bayesian regularization and Scaled Conjugate Gradient training algorithms for model training and optimization. Training datasets include years of field data and outputs from a calibrated hydraulic/hydrological karst model. The Bayesian model achieves Nash-Sutcliffe Efficiency (NSE) of 0.95 up to 45 days ahead, whilst the Scaled Conjugate Gradient models outperform this, maintaining NSE of 0.98 up to 20 days and 0.95 up to 60 days ahead, with reduced training time compared to Bayesian models. Both models exhibit high performance with a Coefficient of Correlation (r) value of 0.98 up to 60 days ahead and Kling Gupta Efficiency of 0.96 up to 15 days ahead. The research shows that integrating diverse data sources and using both daily and hourly models improve such a flood warning system's resilience and reliability.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"192 \",\"pages\":\"Article 106591\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225002750\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002750","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了南戈尔韦(爱尔兰)低地喀斯特地区地下水洪水预报模型。它采用结合贝叶斯正则化和缩放共轭梯度训练算法的神经网络模型进行模型训练和优化。训练数据集包括多年的现场数据和校准的水力/水文喀斯特模型的输出。贝叶斯模型在45天内实现了0.95的纳什-苏特克利夫效率(NSE),而缩放共轭梯度模型优于此,在20天和60天内保持0.98的NSE,与贝叶斯模型相比,减少了训练时间。两种模型的相关系数(r)为0.98,克林-古普塔效率(Kling Gupta Efficiency)为0.96。研究表明,整合不同的数据源,同时使用每日和每小时模型,可以提高这种洪水预警系统的弹性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing flood forecasts: A comprehensive neural network approach for groundwater flooding in lowland karst areas
This study has developed forecast models for groundwater flooding in lowland karst region of south Galway (Ireland). It employed neural network models incorporating Bayesian regularization and Scaled Conjugate Gradient training algorithms for model training and optimization. Training datasets include years of field data and outputs from a calibrated hydraulic/hydrological karst model. The Bayesian model achieves Nash-Sutcliffe Efficiency (NSE) of 0.95 up to 45 days ahead, whilst the Scaled Conjugate Gradient models outperform this, maintaining NSE of 0.98 up to 20 days and 0.95 up to 60 days ahead, with reduced training time compared to Bayesian models. Both models exhibit high performance with a Coefficient of Correlation (r) value of 0.98 up to 60 days ahead and Kling Gupta Efficiency of 0.96 up to 15 days ahead. The research shows that integrating diverse data sources and using both daily and hourly models improve such a flood warning system's resilience and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信