{"title":"模型预测控制中建筑能耗和室内空气温度跨建筑预测的迁移学习","authors":"Hongwen Dou, Kun Zhang","doi":"10.1016/j.jobe.2025.113341","DOIUrl":null,"url":null,"abstract":"When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-hour horizon with 15-minute intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"46 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications\",\"authors\":\"Hongwen Dou, Kun Zhang\",\"doi\":\"10.1016/j.jobe.2025.113341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-hour horizon with 15-minute intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jobe.2025.113341\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications
When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-hour horizon with 15-minute intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.