María Teresa Aguilar-Carrasco, Carmen María Calama-González, Rocío Escandón, Gerardo Maria Mauro, Rafael Suárez
{"title":"基于参数化数值模型的西班牙南部中学建筑热舒适评价","authors":"María Teresa Aguilar-Carrasco, Carmen María Calama-González, Rocío Escandón, Gerardo Maria Mauro, Rafael Suárez","doi":"10.1016/j.jobe.2025.113343","DOIUrl":null,"url":null,"abstract":"Climate change is accelerating global warming, leading in turn to increased thermal stress and indoor overheating, particularly in buildings with high occupancy in southern Europe. This study examines the thermal performance of secondary school buildings in southern Spain, focusing on the influence of ventilation on thermal comfort. Given the reliance on natural ventilation of a significant portion of the Mediterranean school building stock, this research aims to characterize thermal comfort conditions using validated parametric simulation models on a regional scale. The study analyses current and future comfort conditions across different climatic zones, incorporating climate change projections, and assessing overheating and undercooling risks. Results show how ventilation without thermal treatment plays a crucial role in both overheating and undercooling. Higher ventilation rates generally lead to discomfort during winter but improve comfort in summer. Building orientation and solar exposure further influence comfort, with south-facing buildings benefiting from solar gains. Projections for 2050 suggest an increase in overheating risks, particularly in cities with higher cooling degree days (CDD). Despite the benefits of higher ventilation rates, these may not fully mitigate the anticipated increase in overheating, which showcases the need for additional strategies, such as active ventilation systems, to address these challenges. The findings highlight the need for improved adaptation strategies to mitigate the effects of climate change.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"51 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal comfort assessment of secondary school building stock in southern Spain using parametric numerical models and applying different climatic and ventilation scenarios\",\"authors\":\"María Teresa Aguilar-Carrasco, Carmen María Calama-González, Rocío Escandón, Gerardo Maria Mauro, Rafael Suárez\",\"doi\":\"10.1016/j.jobe.2025.113343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is accelerating global warming, leading in turn to increased thermal stress and indoor overheating, particularly in buildings with high occupancy in southern Europe. This study examines the thermal performance of secondary school buildings in southern Spain, focusing on the influence of ventilation on thermal comfort. Given the reliance on natural ventilation of a significant portion of the Mediterranean school building stock, this research aims to characterize thermal comfort conditions using validated parametric simulation models on a regional scale. The study analyses current and future comfort conditions across different climatic zones, incorporating climate change projections, and assessing overheating and undercooling risks. Results show how ventilation without thermal treatment plays a crucial role in both overheating and undercooling. Higher ventilation rates generally lead to discomfort during winter but improve comfort in summer. Building orientation and solar exposure further influence comfort, with south-facing buildings benefiting from solar gains. Projections for 2050 suggest an increase in overheating risks, particularly in cities with higher cooling degree days (CDD). Despite the benefits of higher ventilation rates, these may not fully mitigate the anticipated increase in overheating, which showcases the need for additional strategies, such as active ventilation systems, to address these challenges. The findings highlight the need for improved adaptation strategies to mitigate the effects of climate change.\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jobe.2025.113343\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113343","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Thermal comfort assessment of secondary school building stock in southern Spain using parametric numerical models and applying different climatic and ventilation scenarios
Climate change is accelerating global warming, leading in turn to increased thermal stress and indoor overheating, particularly in buildings with high occupancy in southern Europe. This study examines the thermal performance of secondary school buildings in southern Spain, focusing on the influence of ventilation on thermal comfort. Given the reliance on natural ventilation of a significant portion of the Mediterranean school building stock, this research aims to characterize thermal comfort conditions using validated parametric simulation models on a regional scale. The study analyses current and future comfort conditions across different climatic zones, incorporating climate change projections, and assessing overheating and undercooling risks. Results show how ventilation without thermal treatment plays a crucial role in both overheating and undercooling. Higher ventilation rates generally lead to discomfort during winter but improve comfort in summer. Building orientation and solar exposure further influence comfort, with south-facing buildings benefiting from solar gains. Projections for 2050 suggest an increase in overheating risks, particularly in cities with higher cooling degree days (CDD). Despite the benefits of higher ventilation rates, these may not fully mitigate the anticipated increase in overheating, which showcases the need for additional strategies, such as active ventilation systems, to address these challenges. The findings highlight the need for improved adaptation strategies to mitigate the effects of climate change.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.