连通线I:一个普适的端空间理论

IF 1.2 1区 数学 Q1 MATHEMATICS
Nathan Bowler, Florian Reich
{"title":"连通线I:一个普适的端空间理论","authors":"Nathan Bowler, Florian Reich","doi":"10.1016/j.jctb.2025.06.003","DOIUrl":null,"url":null,"abstract":"In this series we introduce and investigate the concept of <ce:italic>connectoids</ce:italic>, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectoids I: A universal end space theory\",\"authors\":\"Nathan Bowler, Florian Reich\",\"doi\":\"10.1016/j.jctb.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this series we introduce and investigate the concept of <ce:italic>connectoids</ce:italic>, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jctb.2025.06.003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jctb.2025.06.003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本系列中,我们介绍并研究了连通图的概念,它捕获了各种离散对象的连通性结构,如无向图、有向图、双向图、超图或有限拟阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectoids I: A universal end space theory
In this series we introduce and investigate the concept of connectoids, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信