异构双酚基多孔聚合物中有效激子解离用于无牺牲剂H2O2光合作用和生物质增值

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Flora Banerjee, Sougata Saha, Soumitra Sau, Shubhangi Majumdar, Shiladitya Roy, Pramit K. Chowdhury, Swapan K. Pati and Suman Kalyan Samanta
{"title":"异构双酚基多孔聚合物中有效激子解离用于无牺牲剂H2O2光合作用和生物质增值","authors":"Flora Banerjee, Sougata Saha, Soumitra Sau, Shubhangi Majumdar, Shiladitya Roy, Pramit K. Chowdhury, Swapan K. Pati and Suman Kalyan Samanta","doi":"10.1039/D5TA03188E","DOIUrl":null,"url":null,"abstract":"<p >Achieving sustainable, sacrificial agent-free hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) production at the millimolar scale through molecular-level modulation of organic semiconductors is a crucial global challenge. In this study, novel hierarchical porous polymers incorporating triphenylamine and BINOL (1,1′-bi-2-naphthol) were synthesized using FeCl<small><sub>3</sub></small>-mediated homopolymerization, forming BINOL <em>in situ</em>, unlike conventional approaches that rely on pre-formed derivatives. These polymers, designed with varied linkage positions, exhibit remarkable optoelectronic properties, enabling efficient artificial photosynthesis of H<small><sub>2</sub></small>O<small><sub>2</sub></small> up to 2.5 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> from natural water sources (river, tap, and seawater) without any additives. A direct 2e<small><sup>−</sup></small> oxygen reduction and water oxidation pathway facilitated stable H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation, achieving 6.47 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> in pure water under AM 1.5 G illumination, with a significantly high solar-to-chemical conversion efficiency of 1.6%. This rate was further increased to 27.5 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> in isopropanol/water (1 : 1), ranking among the highest reported values thus far. Biomass-derived sacrificial agents such as 5-hydroxymethyl furfural and tetrahydrofuryl alcohol (THFA) further increased the generation rate (5.17 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> in 1 : 10 THFA/water), mitigating energy demands in both ways: H<small><sub>2</sub></small>O<small><sub>2</sub></small> production and biomass valorization. Notably, the polymers were recycled up to ten consecutive runs without any loss in their catalytic efficiency. In addition, DFT calculations confirmed the BINOL served as the potential oxygen reduction site with thermodynamic feasibility for H<small><sub>2</sub></small>O<small><sub>2</sub></small> formation, with a free energy release of 2.86 eV in IPA/water (1 : 10) and 0.38 eV in pure water.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 31","pages":" 25878-25891"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient exciton dissociation in isomeric BINOL-based porous polymers for sacrificial agent-free H2O2 photosynthesis and biomass valorization†\",\"authors\":\"Flora Banerjee, Sougata Saha, Soumitra Sau, Shubhangi Majumdar, Shiladitya Roy, Pramit K. Chowdhury, Swapan K. Pati and Suman Kalyan Samanta\",\"doi\":\"10.1039/D5TA03188E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving sustainable, sacrificial agent-free hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) production at the millimolar scale through molecular-level modulation of organic semiconductors is a crucial global challenge. In this study, novel hierarchical porous polymers incorporating triphenylamine and BINOL (1,1′-bi-2-naphthol) were synthesized using FeCl<small><sub>3</sub></small>-mediated homopolymerization, forming BINOL <em>in situ</em>, unlike conventional approaches that rely on pre-formed derivatives. These polymers, designed with varied linkage positions, exhibit remarkable optoelectronic properties, enabling efficient artificial photosynthesis of H<small><sub>2</sub></small>O<small><sub>2</sub></small> up to 2.5 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> from natural water sources (river, tap, and seawater) without any additives. A direct 2e<small><sup>−</sup></small> oxygen reduction and water oxidation pathway facilitated stable H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation, achieving 6.47 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> in pure water under AM 1.5 G illumination, with a significantly high solar-to-chemical conversion efficiency of 1.6%. This rate was further increased to 27.5 mmol·g<small><sup>−1</sup></small>·h<small><sup>−1</sup></small> in isopropanol/water (1 : 1), ranking among the highest reported values thus far. Biomass-derived sacrificial agents such as 5-hydroxymethyl furfural and tetrahydrofuryl alcohol (THFA) further increased the generation rate (5.17 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> in 1 : 10 THFA/water), mitigating energy demands in both ways: H<small><sub>2</sub></small>O<small><sub>2</sub></small> production and biomass valorization. Notably, the polymers were recycled up to ten consecutive runs without any loss in their catalytic efficiency. In addition, DFT calculations confirmed the BINOL served as the potential oxygen reduction site with thermodynamic feasibility for H<small><sub>2</sub></small>O<small><sub>2</sub></small> formation, with a free energy release of 2.86 eV in IPA/water (1 : 10) and 0.38 eV in pure water.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 31\",\"pages\":\" 25878-25891\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03188e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03188e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过分子水平调制有机半导体实现可持续的、无牺牲剂的毫摩尔级过氧化氢(H₂O₂)生产是一个至关重要的全球性挑战。在这项研究中,利用FeCl₃介导的均聚反应合成了含有三苯胺和BINOL(1,1′-bi-2-萘酚)的新型分层多孔聚合物,原位生成BINOL,而不像传统的方法依赖于预形成的衍生物。这些聚合物具有不同的连接位置,具有显着的光电性能,可以在不添加任何添加剂的情况下,从天然水源(河流,自来水和海水)中高效地进行高达2.5 mmol.g . 1. H -1的h2o O₂人工光合作用。直接的2e -氧还原和水氧化途径促进了稳定的H₂O₂生成,在AM 1.5G照明下,在纯水中达到6.47 mmol.g-1.h-1,具有1.6%的太阳能-化学转换效率。在异丙醇/水(1:1)条件下,该速率进一步提高到27.5 mmol.g-1 - h-1,是迄今为止报道的最高值。生物质衍生的牺牲剂,如5-羟甲基糠醛和四氢呋喃醇(THFA)进一步提高了生成速率(在1:10 THFA/水条件下为5.17 mmol·g-1·H -1),通过两种方式减轻了能量需求:H₂O₂的产生和生物质的增殖。值得注意的是,聚合物在六次循环后保持了效率,没有结构或形态上的降解。此外,DFT计算证实了BINOL作为潜在氧还原位点的作用,具有生成H₂O₂的热力学可行性,在IPA/水(1:10)和纯水中分别释放2.86 eV和0.38 eV的自由能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient exciton dissociation in isomeric BINOL-based porous polymers for sacrificial agent-free H2O2 photosynthesis and biomass valorization†

Efficient exciton dissociation in isomeric BINOL-based porous polymers for sacrificial agent-free H2O2 photosynthesis and biomass valorization†

Achieving sustainable, sacrificial agent-free hydrogen peroxide (H2O2) production at the millimolar scale through molecular-level modulation of organic semiconductors is a crucial global challenge. In this study, novel hierarchical porous polymers incorporating triphenylamine and BINOL (1,1′-bi-2-naphthol) were synthesized using FeCl3-mediated homopolymerization, forming BINOL in situ, unlike conventional approaches that rely on pre-formed derivatives. These polymers, designed with varied linkage positions, exhibit remarkable optoelectronic properties, enabling efficient artificial photosynthesis of H2O2 up to 2.5 mmol·g−1·h−1 from natural water sources (river, tap, and seawater) without any additives. A direct 2e oxygen reduction and water oxidation pathway facilitated stable H2O2 generation, achieving 6.47 mmol·g−1·h−1 in pure water under AM 1.5 G illumination, with a significantly high solar-to-chemical conversion efficiency of 1.6%. This rate was further increased to 27.5 mmol·g−1·h−1 in isopropanol/water (1 : 1), ranking among the highest reported values thus far. Biomass-derived sacrificial agents such as 5-hydroxymethyl furfural and tetrahydrofuryl alcohol (THFA) further increased the generation rate (5.17 mmol g−1 h−1 in 1 : 10 THFA/water), mitigating energy demands in both ways: H2O2 production and biomass valorization. Notably, the polymers were recycled up to ten consecutive runs without any loss in their catalytic efficiency. In addition, DFT calculations confirmed the BINOL served as the potential oxygen reduction site with thermodynamic feasibility for H2O2 formation, with a free energy release of 2.86 eV in IPA/water (1 : 10) and 0.38 eV in pure water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信