{"title":"Co2P与Co/Co2P界面耦合的硝酸盐串联电化学还原为氨","authors":"Yanbin Qu, Tianyi Dai, Guopeng Ding, Zixuan Feng, Zhili Wang, Qing Jiang","doi":"10.1016/j.jmst.2025.04.083","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction reaction (<mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR) is a highly attractive route for both ammonia (NH<ce:inf loc=\"post\">3</ce:inf>) synthesis and wastewater treatment. The <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR involves the reduction of <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, the conversion of <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\"post\">3</ce:inf>, and the dissociation of H<ce:inf loc=\"post\">2</ce:inf>O to *H. However, these three reactions depend on distinct catalyst properties that are difficult to achieve in a single-site catalyst. Here a tandem catalyst of Co/Co<ce:inf loc=\"post\">2</ce:inf>P heterostructures encapsulated by N-doped graphene shells on carbon nanotube (Co/Co<ce:inf loc=\"post\">2</ce:inf>P@NG/CNT) for <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR were developed, achieving an attractive NH<ce:inf loc=\"post\">3</ce:inf> yield rate of 47.8 mg h<ce:sup loc=\"post\">−1</ce:sup> mg<ce:sup loc=\"post\">−1</ce:sup> with a corresponding NH<ce:inf loc=\"post\">3</ce:inf> Faradaic efficiency of 99.2% in 0.05 mol/L NO<ce:inf loc=\"post\">3</ce:inf><ce:sup loc=\"post\">−</ce:sup> solution, exceeding most of the reported catalysts under the same <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> concentration. Experimental and theoretical studies reveal that the Co<ce:inf loc=\"post\">2</ce:inf>P effectively reduces <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, while Co/Co<ce:inf loc=\"post\">2</ce:inf>P interface is responsible for the subsequent conversion of <mml:math altimg=\"si2.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\"post\">3</ce:inf>. Meanwhile, the H<ce:inf loc=\"post\">2</ce:inf>O dissociation is promoted by the Co/Co<ce:inf loc=\"post\">2</ce:inf>P interface to generate *H for intermediates hydrogenation. Such a tandem catalysis process accelerates the conversion of <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> into NH<ce:inf loc=\"post\">3</ce:inf>. The Co/Co<ce:inf loc=\"post\">2</ce:inf>P@NG/CNT also shows good stability due to the robust protection from N-doped graphene shell.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"62 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient tandem electrochemical reduction of nitrate to ammonia through coupling Co2P with Co/Co2P interface\",\"authors\":\"Yanbin Qu, Tianyi Dai, Guopeng Ding, Zixuan Feng, Zhili Wang, Qing Jiang\",\"doi\":\"10.1016/j.jmst.2025.04.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical nitrate reduction reaction (<mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR) is a highly attractive route for both ammonia (NH<ce:inf loc=\\\"post\\\">3</ce:inf>) synthesis and wastewater treatment. The <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR involves the reduction of <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\\\"si2.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, the conversion of <mml:math altimg=\\\"si2.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\\\"post\\\">3</ce:inf>, and the dissociation of H<ce:inf loc=\\\"post\\\">2</ce:inf>O to *H. However, these three reactions depend on distinct catalyst properties that are difficult to achieve in a single-site catalyst. Here a tandem catalyst of Co/Co<ce:inf loc=\\\"post\\\">2</ce:inf>P heterostructures encapsulated by N-doped graphene shells on carbon nanotube (Co/Co<ce:inf loc=\\\"post\\\">2</ce:inf>P@NG/CNT) for <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> RR were developed, achieving an attractive NH<ce:inf loc=\\\"post\\\">3</ce:inf> yield rate of 47.8 mg h<ce:sup loc=\\\"post\\\">−1</ce:sup> mg<ce:sup loc=\\\"post\\\">−1</ce:sup> with a corresponding NH<ce:inf loc=\\\"post\\\">3</ce:inf> Faradaic efficiency of 99.2% in 0.05 mol/L NO<ce:inf loc=\\\"post\\\">3</ce:inf><ce:sup loc=\\\"post\\\">−</ce:sup> solution, exceeding most of the reported catalysts under the same <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> concentration. Experimental and theoretical studies reveal that the Co<ce:inf loc=\\\"post\\\">2</ce:inf>P effectively reduces <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to <mml:math altimg=\\\"si2.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math>, while Co/Co<ce:inf loc=\\\"post\\\">2</ce:inf>P interface is responsible for the subsequent conversion of <mml:math altimg=\\\"si2.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> to NH<ce:inf loc=\\\"post\\\">3</ce:inf>. Meanwhile, the H<ce:inf loc=\\\"post\\\">2</ce:inf>O dissociation is promoted by the Co/Co<ce:inf loc=\\\"post\\\">2</ce:inf>P interface to generate *H for intermediates hydrogenation. Such a tandem catalysis process accelerates the conversion of <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mtext>NO</mml:mtext><mml:mn>3</mml:mn><mml:mo>−</mml:mo></mml:msubsup></mml:math> into NH<ce:inf loc=\\\"post\\\">3</ce:inf>. The Co/Co<ce:inf loc=\\\"post\\\">2</ce:inf>P@NG/CNT also shows good stability due to the robust protection from N-doped graphene shell.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.04.083\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.083","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient tandem electrochemical reduction of nitrate to ammonia through coupling Co2P with Co/Co2P interface
Electrochemical nitrate reduction reaction (NO3− RR) is a highly attractive route for both ammonia (NH3) synthesis and wastewater treatment. The NO3− RR involves the reduction of NO3− to NO2−, the conversion of NO2− to NH3, and the dissociation of H2O to *H. However, these three reactions depend on distinct catalyst properties that are difficult to achieve in a single-site catalyst. Here a tandem catalyst of Co/Co2P heterostructures encapsulated by N-doped graphene shells on carbon nanotube (Co/Co2P@NG/CNT) for NO3− RR were developed, achieving an attractive NH3 yield rate of 47.8 mg h−1 mg−1 with a corresponding NH3 Faradaic efficiency of 99.2% in 0.05 mol/L NO3− solution, exceeding most of the reported catalysts under the same NO3− concentration. Experimental and theoretical studies reveal that the Co2P effectively reduces NO3− to NO2−, while Co/Co2P interface is responsible for the subsequent conversion of NO2− to NH3. Meanwhile, the H2O dissociation is promoted by the Co/Co2P interface to generate *H for intermediates hydrogenation. Such a tandem catalysis process accelerates the conversion of NO3− into NH3. The Co/Co2P@NG/CNT also shows good stability due to the robust protection from N-doped graphene shell.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.