近红外光驱动CO2还原反应的研究进展与展望

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siheng Yang, Wei Che, Yanhua Shao, Woo Jin Byun, Xiaodong Li, Xingchen Jiao, Ruixiang Li, Jae Sung Lee, Jiaqi Xu, Jong-Beom Baek
{"title":"近红外光驱动CO2还原反应的研究进展与展望","authors":"Siheng Yang, Wei Che, Yanhua Shao, Woo Jin Byun, Xiaodong Li, Xingchen Jiao, Ruixiang Li, Jae Sung Lee, Jiaqi Xu, Jong-Beom Baek","doi":"10.1039/d4cs00721b","DOIUrl":null,"url":null,"abstract":"In the realm of photoconversion of CO<small><sub>2</sub></small> into high-value chemicals, the importance of near-infrared (NIR) light is gradually gaining recognition. Relative to ultraviolet (UV) and visible light, NIR light (700–2500 nm), accounting for <em>ca.</em> 50% of solar energy, offers unique advantages such as deeper penetration depth and stronger photothermal effects. Thus, utilizing NIR light can not only compensate for the inherent limitations of UV/visible light-based CO<small><sub>2</sub></small> reduction systems, but also maximize the use of solar energy. However, efficiently harnessing NIR light remains challenging because of its low photon energy, making it difficult to drive CO<small><sub>2</sub></small> reduction. Additionally, the limited knowledge of the reduction mechanism driven by low-energy photons further hinders progress in this field. In this review, we systematically introduce the motivation and fundamental principles of NIR-light-driven CO<small><sub>2</sub></small> reduction, the design strategies for NIR-light-activated photocatalysts (including the energy band structure regulation strategy, the energy transfer strategy, and the photothermal utilization strategy), NIR-light absorption mechanisms of these catalysts, and representative applications of these strategies. Finally, we present our perspectives on the challenges facing NIR-light-driven CO<small><sub>2</sub></small> reduction and provide suggestions for improving current photocatalysts, characterization techniques, evaluation procedures, and potential large-scale applications in future research. With further advancements in NIR-light-driven CO<small><sub>2</sub></small> reduction, it holds great promise to maximize the exploitation of solar energy, ultimately achieving efficient CO<small><sub>2</sub></small> photoconversion for industrial applications.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"7 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements and prospects of near-infrared-light driven CO2 reduction reaction\",\"authors\":\"Siheng Yang, Wei Che, Yanhua Shao, Woo Jin Byun, Xiaodong Li, Xingchen Jiao, Ruixiang Li, Jae Sung Lee, Jiaqi Xu, Jong-Beom Baek\",\"doi\":\"10.1039/d4cs00721b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of photoconversion of CO<small><sub>2</sub></small> into high-value chemicals, the importance of near-infrared (NIR) light is gradually gaining recognition. Relative to ultraviolet (UV) and visible light, NIR light (700–2500 nm), accounting for <em>ca.</em> 50% of solar energy, offers unique advantages such as deeper penetration depth and stronger photothermal effects. Thus, utilizing NIR light can not only compensate for the inherent limitations of UV/visible light-based CO<small><sub>2</sub></small> reduction systems, but also maximize the use of solar energy. However, efficiently harnessing NIR light remains challenging because of its low photon energy, making it difficult to drive CO<small><sub>2</sub></small> reduction. Additionally, the limited knowledge of the reduction mechanism driven by low-energy photons further hinders progress in this field. In this review, we systematically introduce the motivation and fundamental principles of NIR-light-driven CO<small><sub>2</sub></small> reduction, the design strategies for NIR-light-activated photocatalysts (including the energy band structure regulation strategy, the energy transfer strategy, and the photothermal utilization strategy), NIR-light absorption mechanisms of these catalysts, and representative applications of these strategies. Finally, we present our perspectives on the challenges facing NIR-light-driven CO<small><sub>2</sub></small> reduction and provide suggestions for improving current photocatalysts, characterization techniques, evaluation procedures, and potential large-scale applications in future research. With further advancements in NIR-light-driven CO<small><sub>2</sub></small> reduction, it holds great promise to maximize the exploitation of solar energy, ultimately achieving efficient CO<small><sub>2</sub></small> photoconversion for industrial applications.\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cs00721b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00721b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在二氧化碳光转化为高价值化学品的领域,近红外(NIR)光的重要性逐渐得到认识。相对于紫外线(UV)和可见光,近红外光(700 - 2500nm)约占太阳能的50%,具有穿透深度更深、光热效应更强等独特优势。因此,利用近红外光不仅可以弥补基于紫外线/可见光的二氧化碳减排系统的固有局限性,而且还可以最大限度地利用太阳能。然而,有效利用近红外光仍然具有挑战性,因为它的光子能量很低,很难推动二氧化碳的减少。此外,对低能光子驱动的还原机制的有限了解进一步阻碍了这一领域的进展。本文系统地介绍了nir光驱动CO2还原的动力和基本原理、nir光激活光催化剂的设计策略(包括能带结构调节策略、能量转移策略和光热利用策略)、nir光吸收机理以及这些策略的代表性应用。最后,我们展望了nir光驱动CO2减排面临的挑战,并提出了改进现有光催化剂、表征技术、评估程序和未来大规模应用研究的建议。随着nir光驱动二氧化碳减排技术的进一步发展,它有望最大限度地利用太阳能,最终实现工业应用中高效的二氧化碳光转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancements and prospects of near-infrared-light driven CO2 reduction reaction

Advancements and prospects of near-infrared-light driven CO2 reduction reaction
In the realm of photoconversion of CO2 into high-value chemicals, the importance of near-infrared (NIR) light is gradually gaining recognition. Relative to ultraviolet (UV) and visible light, NIR light (700–2500 nm), accounting for ca. 50% of solar energy, offers unique advantages such as deeper penetration depth and stronger photothermal effects. Thus, utilizing NIR light can not only compensate for the inherent limitations of UV/visible light-based CO2 reduction systems, but also maximize the use of solar energy. However, efficiently harnessing NIR light remains challenging because of its low photon energy, making it difficult to drive CO2 reduction. Additionally, the limited knowledge of the reduction mechanism driven by low-energy photons further hinders progress in this field. In this review, we systematically introduce the motivation and fundamental principles of NIR-light-driven CO2 reduction, the design strategies for NIR-light-activated photocatalysts (including the energy band structure regulation strategy, the energy transfer strategy, and the photothermal utilization strategy), NIR-light absorption mechanisms of these catalysts, and representative applications of these strategies. Finally, we present our perspectives on the challenges facing NIR-light-driven CO2 reduction and provide suggestions for improving current photocatalysts, characterization techniques, evaluation procedures, and potential large-scale applications in future research. With further advancements in NIR-light-driven CO2 reduction, it holds great promise to maximize the exploitation of solar energy, ultimately achieving efficient CO2 photoconversion for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信