三维基因组中的结构变异是疾病的驱动因素

IF 39.1 1区 生物学 Q1 GENETICS & HEREDITY
Varun K. A. Sreenivasan, Verónica Yumiceba, Malte Spielmann
{"title":"三维基因组中的结构变异是疾病的驱动因素","authors":"Varun K. A. Sreenivasan, Verónica Yumiceba, Malte Spielmann","doi":"10.1038/s41576-025-00862-x","DOIUrl":null,"url":null,"abstract":"<p>The spatial organization of the genome within the nucleus — also known as genome architecture or 3D genome — is important to the regulation of gene expression. Disruption of the 3D genome, for example, by structural variation, can contribute to disease, including developmental disorders and cancer. Structural variants can rearrange higher-order chromatin structures, such as topologically associating domains, and disrupt interactions between <i>cis-</i>regulatory elements, which can lead to altered gene expression, a phenomenon known as position effects. New experimental and computational approaches are revealing the effect of structural variants on the 3D genome and gene expression and can help interpret their pathogenic potential, which has important implications for patients. Here, we review mechanisms of disease caused by position effects owing to disruptions of genome architecture, and more specifically topologically associating domains, as well as their consequences and clinical impact.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"2 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural variants in the 3D genome as drivers of disease\",\"authors\":\"Varun K. A. Sreenivasan, Verónica Yumiceba, Malte Spielmann\",\"doi\":\"10.1038/s41576-025-00862-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spatial organization of the genome within the nucleus — also known as genome architecture or 3D genome — is important to the regulation of gene expression. Disruption of the 3D genome, for example, by structural variation, can contribute to disease, including developmental disorders and cancer. Structural variants can rearrange higher-order chromatin structures, such as topologically associating domains, and disrupt interactions between <i>cis-</i>regulatory elements, which can lead to altered gene expression, a phenomenon known as position effects. New experimental and computational approaches are revealing the effect of structural variants on the 3D genome and gene expression and can help interpret their pathogenic potential, which has important implications for patients. Here, we review mechanisms of disease caused by position effects owing to disruptions of genome architecture, and more specifically topologically associating domains, as well as their consequences and clinical impact.</p>\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41576-025-00862-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00862-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基因组在细胞核内的空间组织——也被称为基因组结构或三维基因组——对基因表达的调控很重要。例如,通过结构变异破坏3D基因组可能导致疾病,包括发育障碍和癌症。结构变异可以重新排列高阶染色质结构,如拓扑相关结构域,并破坏顺式调控元件之间的相互作用,从而导致基因表达的改变,这种现象被称为位置效应。新的实验和计算方法揭示了结构变异对3D基因组和基因表达的影响,并有助于解释其致病潜力,这对患者具有重要意义。在这里,我们回顾了由于基因组结构的破坏而引起的位置效应引起的疾病的机制,更具体地说是拓扑相关结构域,以及它们的后果和临床影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural variants in the 3D genome as drivers of disease

Structural variants in the 3D genome as drivers of disease

The spatial organization of the genome within the nucleus — also known as genome architecture or 3D genome — is important to the regulation of gene expression. Disruption of the 3D genome, for example, by structural variation, can contribute to disease, including developmental disorders and cancer. Structural variants can rearrange higher-order chromatin structures, such as topologically associating domains, and disrupt interactions between cis-regulatory elements, which can lead to altered gene expression, a phenomenon known as position effects. New experimental and computational approaches are revealing the effect of structural variants on the 3D genome and gene expression and can help interpret their pathogenic potential, which has important implications for patients. Here, we review mechanisms of disease caused by position effects owing to disruptions of genome architecture, and more specifically topologically associating domains, as well as their consequences and clinical impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Genetics
Nature Reviews Genetics 生物-遗传学
CiteScore
57.40
自引率
0.50%
发文量
113
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish. Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience. As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信