利用每周积雪时间序列改进冰川监测和建模

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Rainey Aberle, Ellyn M. Enderlin, David R. Rounce, Shad O’Neel, Brandon Tober, Alexandra Friel
{"title":"利用每周积雪时间序列改进冰川监测和建模","authors":"Rainey Aberle,&nbsp;Ellyn M. Enderlin,&nbsp;David R. Rounce,&nbsp;Shad O’Neel,&nbsp;Brandon Tober,&nbsp;Alexandra Friel","doi":"10.1029/2025GL115523","DOIUrl":null,"url":null,"abstract":"<p>Seasonal snow and ice melt strongly influence glacier mass balance, yet sparse sub-annual observations limit our understanding of seasonal dynamics. Here we construct and analyze weekly snow cover time series for 200 glaciers across western North America from 2013 to 2023 using an automated image processing pipeline. Snow cover varied widely across the region: snow minima timing varied with latitude — from <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>August from 62 to 64<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math>N to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>October from 48 to 50<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math>N—and accumulation area ratios ranged from near-zero to 0.92 (median of 0.52). A comparison of snowlines from observations and the PyGEM glacier mass balance model revealed seasonally evolving but spatially consistent biases in modeled snowlines: observed snowlines rose earlier, but at a slower rate throughout the melt season, than modeled snowlines. Beyond capturing glacier state, snowline observations efficiently provide sub-seasonal mass balance constraints and empirically represent unresolved processes like snow redistribution, refining model gradients and improving projections.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115523","citationCount":"0","resultStr":"{\"title\":\"Leveraging Weekly Snow Cover Time Series for Improved Glacier Monitoring and Modeling\",\"authors\":\"Rainey Aberle,&nbsp;Ellyn M. Enderlin,&nbsp;David R. Rounce,&nbsp;Shad O’Neel,&nbsp;Brandon Tober,&nbsp;Alexandra Friel\",\"doi\":\"10.1029/2025GL115523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seasonal snow and ice melt strongly influence glacier mass balance, yet sparse sub-annual observations limit our understanding of seasonal dynamics. Here we construct and analyze weekly snow cover time series for 200 glaciers across western North America from 2013 to 2023 using an automated image processing pipeline. Snow cover varied widely across the region: snow minima timing varied with latitude — from <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>August from 62 to 64<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math>N to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>October from 48 to 50<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math>N—and accumulation area ratios ranged from near-zero to 0.92 (median of 0.52). A comparison of snowlines from observations and the PyGEM glacier mass balance model revealed seasonally evolving but spatially consistent biases in modeled snowlines: observed snowlines rose earlier, but at a slower rate throughout the melt season, than modeled snowlines. Beyond capturing glacier state, snowline observations efficiently provide sub-seasonal mass balance constraints and empirically represent unresolved processes like snow redistribution, refining model gradients and improving projections.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 13\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115523\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115523","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

季节性冰雪融化强烈影响冰川物质平衡,但稀疏的次年观测限制了我们对季节动态的理解。在这里,我们使用自动化图像处理管道构建并分析了2013年至2023年北美西部200个冰川的每周积雪时间序列。整个地区的积雪量变化很大:最小降雪时间随纬度变化${\sim} $ 8月从62°到64°${}^{\circ}$ N至${\sim} $ 10月从48°到50°${}^{\circ}$ n和积累面积比值范围为接近于0 ~ 0.92(中位数为0.52)。对观测所得雪线与PyGEM冰川质量平衡模式的比较揭示了模拟雪线的季节性演变但空间上一致的偏差:在整个融化季节,观测到的雪线比模拟雪线上升得更早,但速度更慢。除了捕获冰川状态外,雪线观测有效地提供了亚季节质量平衡约束,并经验地代表了未解决的过程,如积雪再分布、改进模型梯度和改进预估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging Weekly Snow Cover Time Series for Improved Glacier Monitoring and Modeling

Leveraging Weekly Snow Cover Time Series for Improved Glacier Monitoring and Modeling

Seasonal snow and ice melt strongly influence glacier mass balance, yet sparse sub-annual observations limit our understanding of seasonal dynamics. Here we construct and analyze weekly snow cover time series for 200 glaciers across western North America from 2013 to 2023 using an automated image processing pipeline. Snow cover varied widely across the region: snow minima timing varied with latitude — from ${\sim} $ August from 62 to 64 ° ${}^{\circ}$ N to ${\sim} $ October from 48 to 50 ° ${}^{\circ}$ N—and accumulation area ratios ranged from near-zero to 0.92 (median of 0.52). A comparison of snowlines from observations and the PyGEM glacier mass balance model revealed seasonally evolving but spatially consistent biases in modeled snowlines: observed snowlines rose earlier, but at a slower rate throughout the melt season, than modeled snowlines. Beyond capturing glacier state, snowline observations efficiently provide sub-seasonal mass balance constraints and empirically represent unresolved processes like snow redistribution, refining model gradients and improving projections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信