Leo James, Christopher Vega-Sánchez, Priya Mehta, Xuehua Zhang, Chiara Neto
{"title":"注油褶皱表面气体微泡的实验研究","authors":"Leo James, Christopher Vega-Sánchez, Priya Mehta, Xuehua Zhang, Chiara Neto","doi":"10.1002/admi.202500160","DOIUrl":null,"url":null,"abstract":"<p>Lubricant-infused surfaces (LIS) have been shown to reduce hydrodynamic drag to a greater extent than theoretically expected, making them attractive candidates for microfluidic applications. The presence of nano- and micro-bubbles has been found to explain this property, but this observation is not widely acknowledged. This work investigated how the volume and distribution of lubricant in wrinkled Teflon LIS affects bubble durability. The lubricant is depleted from LIS by repeated immersion through an air–water interface, as well as by shearing, gravity drainage and spreading. The bubbles are imaged using confocal fluorescence microscopy at different levels of infused lubricant. The lubricant encasing the bubbles on LIS prevented bubbles from shrinking over several hours, compared to uninfused superhydrophobic Teflon wrinkles, in which bubbles more rapidly shrunk in height, typically within 30 min. The size of bubbles is independent of lubricant volume, likely due to lubricant redistribution underwater. These findings point toward the possibility of a short-term stabilization of bubbles on structured surfaces for drag reduction applications through the use of lubricant.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500160","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Gas Microbubbles on Oil-Infused Wrinkled Surfaces\",\"authors\":\"Leo James, Christopher Vega-Sánchez, Priya Mehta, Xuehua Zhang, Chiara Neto\",\"doi\":\"10.1002/admi.202500160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lubricant-infused surfaces (LIS) have been shown to reduce hydrodynamic drag to a greater extent than theoretically expected, making them attractive candidates for microfluidic applications. The presence of nano- and micro-bubbles has been found to explain this property, but this observation is not widely acknowledged. This work investigated how the volume and distribution of lubricant in wrinkled Teflon LIS affects bubble durability. The lubricant is depleted from LIS by repeated immersion through an air–water interface, as well as by shearing, gravity drainage and spreading. The bubbles are imaged using confocal fluorescence microscopy at different levels of infused lubricant. The lubricant encasing the bubbles on LIS prevented bubbles from shrinking over several hours, compared to uninfused superhydrophobic Teflon wrinkles, in which bubbles more rapidly shrunk in height, typically within 30 min. The size of bubbles is independent of lubricant volume, likely due to lubricant redistribution underwater. These findings point toward the possibility of a short-term stabilization of bubbles on structured surfaces for drag reduction applications through the use of lubricant.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500160\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500160\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Study of Gas Microbubbles on Oil-Infused Wrinkled Surfaces
Lubricant-infused surfaces (LIS) have been shown to reduce hydrodynamic drag to a greater extent than theoretically expected, making them attractive candidates for microfluidic applications. The presence of nano- and micro-bubbles has been found to explain this property, but this observation is not widely acknowledged. This work investigated how the volume and distribution of lubricant in wrinkled Teflon LIS affects bubble durability. The lubricant is depleted from LIS by repeated immersion through an air–water interface, as well as by shearing, gravity drainage and spreading. The bubbles are imaged using confocal fluorescence microscopy at different levels of infused lubricant. The lubricant encasing the bubbles on LIS prevented bubbles from shrinking over several hours, compared to uninfused superhydrophobic Teflon wrinkles, in which bubbles more rapidly shrunk in height, typically within 30 min. The size of bubbles is independent of lubricant volume, likely due to lubricant redistribution underwater. These findings point toward the possibility of a short-term stabilization of bubbles on structured surfaces for drag reduction applications through the use of lubricant.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.