通过构建CdWO4/Mn0.5Cd0.5S界面异质结增强光催化析氢

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wenting Xiao , Haohuan Yuan , Jiao Bao , Xin Zhang , Bo Huang , Guannan He
{"title":"通过构建CdWO4/Mn0.5Cd0.5S界面异质结增强光催化析氢","authors":"Wenting Xiao ,&nbsp;Haohuan Yuan ,&nbsp;Jiao Bao ,&nbsp;Xin Zhang ,&nbsp;Bo Huang ,&nbsp;Guannan He","doi":"10.1016/j.surfin.2025.107035","DOIUrl":null,"url":null,"abstract":"<div><div>Mn<sub>x</sub>Cd<sub>1-x</sub>S is an emerging semiconductor photocatalyst due to the tunable band gap and high visible light response. Nevertheless, high charge recombination rate and severe photo-corrosion are two main drawbacks inhibit its further application. In this paper, CdWO<sub>4</sub>/Mn<sub>0.5</sub>Cd<sub>0.5</sub>S interfacial heterojunctions were formed by the hydrothermal process. The homogeneous distribution of CdWO<sub>4</sub> nanorods and Mn<sub>0.5</sub>Cd<sub>0.5</sub>S nanopolyhedra ensure large contact areas, facilitating more heterojunctions formed at the interfaces. By adjusting the CdWO<sub>4</sub> loading, the optimized binary composite, 9CdWO<sub>4</sub>/Mn<sub>0.5</sub>Cd<sub>0.5</sub>S, reached the hydrogen precipitation rate of 8417.1 μmol‧g<sup>-1</sup>‧h<sup>-1</sup>, surpassing both Mn<sub>0.5</sub>Cd<sub>0.5</sub>S and CdWO<sub>4</sub> monomer. The composite also showed brilliant stability, and an Apparent Quantum Yield (AQY) of 14.13 % at 420 nm. The carrier transfer and photocatalytic hydrogen production mechanisms of the materials were analyzed through various characterizations. This work offered valuable ideas for the application of CdWO<sub>4</sub>-based wide-bandgap semiconductors towards photocatalytic hydrogen production.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"72 ","pages":"Article 107035"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic hydrogen evolution through the construction of CdWO4/Mn0.5Cd0.5S interfacial heterojunction\",\"authors\":\"Wenting Xiao ,&nbsp;Haohuan Yuan ,&nbsp;Jiao Bao ,&nbsp;Xin Zhang ,&nbsp;Bo Huang ,&nbsp;Guannan He\",\"doi\":\"10.1016/j.surfin.2025.107035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mn<sub>x</sub>Cd<sub>1-x</sub>S is an emerging semiconductor photocatalyst due to the tunable band gap and high visible light response. Nevertheless, high charge recombination rate and severe photo-corrosion are two main drawbacks inhibit its further application. In this paper, CdWO<sub>4</sub>/Mn<sub>0.5</sub>Cd<sub>0.5</sub>S interfacial heterojunctions were formed by the hydrothermal process. The homogeneous distribution of CdWO<sub>4</sub> nanorods and Mn<sub>0.5</sub>Cd<sub>0.5</sub>S nanopolyhedra ensure large contact areas, facilitating more heterojunctions formed at the interfaces. By adjusting the CdWO<sub>4</sub> loading, the optimized binary composite, 9CdWO<sub>4</sub>/Mn<sub>0.5</sub>Cd<sub>0.5</sub>S, reached the hydrogen precipitation rate of 8417.1 μmol‧g<sup>-1</sup>‧h<sup>-1</sup>, surpassing both Mn<sub>0.5</sub>Cd<sub>0.5</sub>S and CdWO<sub>4</sub> monomer. The composite also showed brilliant stability, and an Apparent Quantum Yield (AQY) of 14.13 % at 420 nm. The carrier transfer and photocatalytic hydrogen production mechanisms of the materials were analyzed through various characterizations. This work offered valuable ideas for the application of CdWO<sub>4</sub>-based wide-bandgap semiconductors towards photocatalytic hydrogen production.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"72 \",\"pages\":\"Article 107035\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023025012891\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025012891","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MnxCd1-xS是一种新兴的半导体光催化剂,具有可调的带隙和高的可见光响应。然而,电荷复合速率高和光腐蚀严重是制约其进一步应用的两个主要缺陷。本文采用水热法制备了CdWO4/Mn0.5Cd0.5S界面异质结。CdWO4纳米棒和Mn0.5Cd0.5S纳米多面体的均匀分布保证了较大的接触面积,有利于在界面处形成更多的异质结。通过调整CdWO4的负载量,优化后的9CdWO4/Mn0.5Cd0.5S二元复合材料的氢析出率达到8417.1 μmol·g-1·h-1,优于Mn0.5Cd0.5S单体和CdWO4单体。该复合材料在420 nm处表现出良好的稳定性,表观量子产率(AQY)为14.13%。通过各种表征分析了材料的载体转移和光催化制氢机理。这项工作为cdwo4基宽带隙半导体在光催化制氢中的应用提供了有价值的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced photocatalytic hydrogen evolution through the construction of CdWO4/Mn0.5Cd0.5S interfacial heterojunction

Enhanced photocatalytic hydrogen evolution through the construction of CdWO4/Mn0.5Cd0.5S interfacial heterojunction
MnxCd1-xS is an emerging semiconductor photocatalyst due to the tunable band gap and high visible light response. Nevertheless, high charge recombination rate and severe photo-corrosion are two main drawbacks inhibit its further application. In this paper, CdWO4/Mn0.5Cd0.5S interfacial heterojunctions were formed by the hydrothermal process. The homogeneous distribution of CdWO4 nanorods and Mn0.5Cd0.5S nanopolyhedra ensure large contact areas, facilitating more heterojunctions formed at the interfaces. By adjusting the CdWO4 loading, the optimized binary composite, 9CdWO4/Mn0.5Cd0.5S, reached the hydrogen precipitation rate of 8417.1 μmol‧g-1‧h-1, surpassing both Mn0.5Cd0.5S and CdWO4 monomer. The composite also showed brilliant stability, and an Apparent Quantum Yield (AQY) of 14.13 % at 420 nm. The carrier transfer and photocatalytic hydrogen production mechanisms of the materials were analyzed through various characterizations. This work offered valuable ideas for the application of CdWO4-based wide-bandgap semiconductors towards photocatalytic hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信