Cs0.17FA0.83PbI3−xBrx钙钛矿太阳能电池性能分析的混合建模与监督学习和SCAPS模拟

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Subham Subba, Joy Sarkar, Suman Chatterjee
{"title":"Cs0.17FA0.83PbI3−xBrx钙钛矿太阳能电池性能分析的混合建模与监督学习和SCAPS模拟","authors":"Subham Subba,&nbsp;Joy Sarkar,&nbsp;Suman Chatterjee","doi":"10.1016/j.mseb.2025.118482","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we integrate numerical simulations with supervised learning to predict the performance of Cs<sub>0.17</sub>FA<sub>0.83</sub>PbI<span><math><msub><mrow></mrow><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Br<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>-based perovskite solar cells. A dataset of 3,240 points was generated using SCAPS by varying absorber thickness (<span><math><mi>t</mi></math></span>), defect density (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>), and donor density (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>) across six bromine compositions (x = 0, 0.5, 1, 1.5, 2, and 2.5). Four Random Forest models were trained to predict power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), achieving test R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> values consistently above 0.99. The corresponding RMSE values were 0.197%, 0.008 V, 0.317 mA/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and 1.181% for PCE, Voc, Jsc, and FF, respectively. To validate generalization, the models were tested on Cs<sub>0.17</sub>FA<sub>0.83</sub>PbI<sub>2.6</sub>Br<sub>0.4</sub> composition, showing strong agreement with simulations. Feature correlation analysis identified <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> as key performance factors. This approach can be extended to other perovskite compositions, device configurations, transport layers, and alternative ML techniques for improved generalization.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118482"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid modeling with supervised learning and SCAPS simulations for performance analysis of Cs0.17FA0.83PbI3−xBrx perovskite solar cells\",\"authors\":\"Subham Subba,&nbsp;Joy Sarkar,&nbsp;Suman Chatterjee\",\"doi\":\"10.1016/j.mseb.2025.118482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we integrate numerical simulations with supervised learning to predict the performance of Cs<sub>0.17</sub>FA<sub>0.83</sub>PbI<span><math><msub><mrow></mrow><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Br<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>-based perovskite solar cells. A dataset of 3,240 points was generated using SCAPS by varying absorber thickness (<span><math><mi>t</mi></math></span>), defect density (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>), and donor density (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>) across six bromine compositions (x = 0, 0.5, 1, 1.5, 2, and 2.5). Four Random Forest models were trained to predict power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), achieving test R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> values consistently above 0.99. The corresponding RMSE values were 0.197%, 0.008 V, 0.317 mA/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and 1.181% for PCE, Voc, Jsc, and FF, respectively. To validate generalization, the models were tested on Cs<sub>0.17</sub>FA<sub>0.83</sub>PbI<sub>2.6</sub>Br<sub>0.4</sub> composition, showing strong agreement with simulations. Feature correlation analysis identified <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> as key performance factors. This approach can be extended to other perovskite compositions, device configurations, transport layers, and alternative ML techniques for improved generalization.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"321 \",\"pages\":\"Article 118482\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725005069\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们将数值模拟与监督学习相结合来预测Cs0.17FA0.83PbI3−xbrx基钙钛矿太阳能电池的性能。通过改变吸收剂厚度(t)、缺陷密度(Nt)和供体密度(Nd),通过六种溴组成(x = 0、0.5、1、1.5、2和2.5),使用SCAPS生成了3,240个点的数据集。对4个随机森林模型进行训练,预测功率转换效率(PCE)、开路电压(Voc)、短路电流密度(Jsc)和填充因子(FF),检验R2值始终高于0.99。PCE、Voc、Jsc和FF的RMSE值分别为0.197%、0.008 V、0.317 mA/cm2和1.181%。为了验证模型的泛化,在Cs0.17FA0.83PbI2.6Br0.4组分上进行了测试,结果与模拟结果吻合较好。特征相关分析发现Nt和Nd是关键性能因素。这种方法可以扩展到其他钙钛矿组合物、设备配置、传输层和替代ML技术,以提高泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid modeling with supervised learning and SCAPS simulations for performance analysis of Cs0.17FA0.83PbI3−xBrx perovskite solar cells

Hybrid modeling with supervised learning and SCAPS simulations for performance analysis of Cs0.17FA0.83PbI3−xBrx perovskite solar cells
In this study, we integrate numerical simulations with supervised learning to predict the performance of Cs0.17FA0.83PbI3xBrx-based perovskite solar cells. A dataset of 3,240 points was generated using SCAPS by varying absorber thickness (t), defect density (Nt), and donor density (Nd) across six bromine compositions (x = 0, 0.5, 1, 1.5, 2, and 2.5). Four Random Forest models were trained to predict power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), achieving test R2 values consistently above 0.99. The corresponding RMSE values were 0.197%, 0.008 V, 0.317 mA/cm2, and 1.181% for PCE, Voc, Jsc, and FF, respectively. To validate generalization, the models were tested on Cs0.17FA0.83PbI2.6Br0.4 composition, showing strong agreement with simulations. Feature correlation analysis identified Nt and Nd as key performance factors. This approach can be extended to other perovskite compositions, device configurations, transport layers, and alternative ML techniques for improved generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信