Chuxiong Deng , Guangjie Zhang , Yaojun Liu , Yajing Gong , Jiawen Fu
{"title":"整合热点、权衡和捆绑,揭示四种与水相关的生态系统服务之间的空间相互作用","authors":"Chuxiong Deng , Guangjie Zhang , Yaojun Liu , Yajing Gong , Jiawen Fu","doi":"10.1016/j.ecoleng.2025.107714","DOIUrl":null,"url":null,"abstract":"<div><div>China is committed to advancing the integrated governance reform of water resources, water environment, and water ecology (Three Water Integration, TWI), aiming to enhance the effectiveness of systematic watershed management. However, interaction analyses of TWI that rely on static element coupling remain inadequate for comprehensively supporting the demands of systematic watershed management. This study reveals the spatial interactions within TWI by analyzing the cold and hotspots, trade-offs and synergies, and bundles of water-related ecosystem services (WESs), through the dimensions of multifunctionality, correlation, and dominance. The results indicate significant differences in temporal variations, structural ratios, and spatial distributions among the four types of WESs, namely water provisioning, water purification, soil conservation, and flood regulation. Although the hotspots of individual WES exhibit significant spatial heterogeneity, the spatial overlap of multiple WESs hotspots encompasses 23.68 % of the watershed area, thereby identifying multifunctional ecological priority conservation zones. Six distinct trade-off and synergy relationships among WESs are identified, with synergies comprising two-thirds, highlighting their potential to support win-win outcomes in TWI implementation. Four functional areas with distinct dominant WESs are identified, corresponding to the low-level balanced bundle of WESs, the water purification-water provisioning synergy bundle, the soil conservation-water provisioning synergy bundle, and the flood regulation-water provisioning synergy bundle. Through quantitative characterization the spatial interactions of WESs, this study provides a new perspective for the systematic advancement of watershed TWI management.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"219 ","pages":"Article 107714"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating hotspots, trade-offs and bundles to reveal the spatial interactions among four water-related ecosystem services for systematic watershed management\",\"authors\":\"Chuxiong Deng , Guangjie Zhang , Yaojun Liu , Yajing Gong , Jiawen Fu\",\"doi\":\"10.1016/j.ecoleng.2025.107714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>China is committed to advancing the integrated governance reform of water resources, water environment, and water ecology (Three Water Integration, TWI), aiming to enhance the effectiveness of systematic watershed management. However, interaction analyses of TWI that rely on static element coupling remain inadequate for comprehensively supporting the demands of systematic watershed management. This study reveals the spatial interactions within TWI by analyzing the cold and hotspots, trade-offs and synergies, and bundles of water-related ecosystem services (WESs), through the dimensions of multifunctionality, correlation, and dominance. The results indicate significant differences in temporal variations, structural ratios, and spatial distributions among the four types of WESs, namely water provisioning, water purification, soil conservation, and flood regulation. Although the hotspots of individual WES exhibit significant spatial heterogeneity, the spatial overlap of multiple WESs hotspots encompasses 23.68 % of the watershed area, thereby identifying multifunctional ecological priority conservation zones. Six distinct trade-off and synergy relationships among WESs are identified, with synergies comprising two-thirds, highlighting their potential to support win-win outcomes in TWI implementation. Four functional areas with distinct dominant WESs are identified, corresponding to the low-level balanced bundle of WESs, the water purification-water provisioning synergy bundle, the soil conservation-water provisioning synergy bundle, and the flood regulation-water provisioning synergy bundle. Through quantitative characterization the spatial interactions of WESs, this study provides a new perspective for the systematic advancement of watershed TWI management.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"219 \",\"pages\":\"Article 107714\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857425002046\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425002046","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Integrating hotspots, trade-offs and bundles to reveal the spatial interactions among four water-related ecosystem services for systematic watershed management
China is committed to advancing the integrated governance reform of water resources, water environment, and water ecology (Three Water Integration, TWI), aiming to enhance the effectiveness of systematic watershed management. However, interaction analyses of TWI that rely on static element coupling remain inadequate for comprehensively supporting the demands of systematic watershed management. This study reveals the spatial interactions within TWI by analyzing the cold and hotspots, trade-offs and synergies, and bundles of water-related ecosystem services (WESs), through the dimensions of multifunctionality, correlation, and dominance. The results indicate significant differences in temporal variations, structural ratios, and spatial distributions among the four types of WESs, namely water provisioning, water purification, soil conservation, and flood regulation. Although the hotspots of individual WES exhibit significant spatial heterogeneity, the spatial overlap of multiple WESs hotspots encompasses 23.68 % of the watershed area, thereby identifying multifunctional ecological priority conservation zones. Six distinct trade-off and synergy relationships among WESs are identified, with synergies comprising two-thirds, highlighting their potential to support win-win outcomes in TWI implementation. Four functional areas with distinct dominant WESs are identified, corresponding to the low-level balanced bundle of WESs, the water purification-water provisioning synergy bundle, the soil conservation-water provisioning synergy bundle, and the flood regulation-water provisioning synergy bundle. Through quantitative characterization the spatial interactions of WESs, this study provides a new perspective for the systematic advancement of watershed TWI management.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.