通过火花等离子烧结和热处理,获得了优异的(TiC + (TiZr)5Si3)/TA15复合材料的高温强度

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Qiang Wang , Zhao-Hui Zhang , Xing-Wang Cheng , Xiao-Tong Jia , Yang-Yu He , Jin-Zhao Zhou , Yuan-Hao Sun , Xian-Yu Li
{"title":"通过火花等离子烧结和热处理,获得了优异的(TiC + (TiZr)5Si3)/TA15复合材料的高温强度","authors":"Qiang Wang ,&nbsp;Zhao-Hui Zhang ,&nbsp;Xing-Wang Cheng ,&nbsp;Xiao-Tong Jia ,&nbsp;Yang-Yu He ,&nbsp;Jin-Zhao Zhou ,&nbsp;Yuan-Hao Sun ,&nbsp;Xian-Yu Li","doi":"10.1016/j.coco.2025.102520","DOIUrl":null,"url":null,"abstract":"<div><div>To further enhance the mechanical performance of as-sintered (TiC + (TiZr)<sub>5</sub>Si<sub>3</sub>)/TA15 composites, this study explores the influence of heat treatment on their microstructure and mechanical behavior. Following solution treatment at 1100 °C for 30 min and subsequent water quenching, the matrix transforms entirely into α′ martensite. The TiC particles retain a stable quasi-continuous network distribution, while the (TiZr)<sub>5</sub>Si<sub>3</sub> particles dissolve back into the matrix. After quenching, the composite achieves outstanding compressive properties at room temperature, including a yield strength of 1442 MPa, an ultimate compressive strength of 2178 MPa, and a fracture strain of 25.8 %. At 650 °C, it demonstrates a tensile strength of 835 MPa and an elongation of 18.5 %. Subsequent aging at 600 °C for 300 min results in the α′ martensitic structure without significant decomposition, and (TiZr)<sub>5</sub>Si<sub>3</sub> particles re-precipitate within the quasi-continuous network. After solution + aging treatment, the room-temperature compressive yield strength increases to 1617 MPa, representing a 35.0 % improvement over the as-sintered condition. At 650 °C, the tensile strength rises to 887 MPa, marking a 51.6 % increase compared to the as-sintered composite. The remarkable enhancement in mechanical performance following heat treatment is primarily attributed to the combined effects of α′ martensite strengthening, dislocation strengthening, and solid solution strengthening.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"58 ","pages":"Article 102520"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attaining superior high-temperature strength in (TiC + (TiZr)5Si3)/TA15 composites through spark plasma sintering and heat treatment\",\"authors\":\"Qiang Wang ,&nbsp;Zhao-Hui Zhang ,&nbsp;Xing-Wang Cheng ,&nbsp;Xiao-Tong Jia ,&nbsp;Yang-Yu He ,&nbsp;Jin-Zhao Zhou ,&nbsp;Yuan-Hao Sun ,&nbsp;Xian-Yu Li\",\"doi\":\"10.1016/j.coco.2025.102520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To further enhance the mechanical performance of as-sintered (TiC + (TiZr)<sub>5</sub>Si<sub>3</sub>)/TA15 composites, this study explores the influence of heat treatment on their microstructure and mechanical behavior. Following solution treatment at 1100 °C for 30 min and subsequent water quenching, the matrix transforms entirely into α′ martensite. The TiC particles retain a stable quasi-continuous network distribution, while the (TiZr)<sub>5</sub>Si<sub>3</sub> particles dissolve back into the matrix. After quenching, the composite achieves outstanding compressive properties at room temperature, including a yield strength of 1442 MPa, an ultimate compressive strength of 2178 MPa, and a fracture strain of 25.8 %. At 650 °C, it demonstrates a tensile strength of 835 MPa and an elongation of 18.5 %. Subsequent aging at 600 °C for 300 min results in the α′ martensitic structure without significant decomposition, and (TiZr)<sub>5</sub>Si<sub>3</sub> particles re-precipitate within the quasi-continuous network. After solution + aging treatment, the room-temperature compressive yield strength increases to 1617 MPa, representing a 35.0 % improvement over the as-sintered condition. At 650 °C, the tensile strength rises to 887 MPa, marking a 51.6 % increase compared to the as-sintered composite. The remarkable enhancement in mechanical performance following heat treatment is primarily attributed to the combined effects of α′ martensite strengthening, dislocation strengthening, and solid solution strengthening.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"58 \",\"pages\":\"Article 102520\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925002736\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925002736","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高烧结态(TiC + (TiZr)5Si3)/TA15复合材料的力学性能,本研究探讨了热处理对其显微组织和力学行为的影响。1100℃固溶处理30min后水淬,基体完全转变为α′马氏体。TiC颗粒保持稳定的准连续网络分布,而(TiZr)5Si3颗粒溶解回基体中。淬火后,复合材料在室温下具有优异的抗压性能,屈服强度为1442 MPa,极限抗压强度为2178 MPa,断裂应变为25.8%。在650℃时,拉伸强度为835 MPa,伸长率为18.5%。600℃时效300 min后,α′马氏体组织未发生明显分解,(TiZr)5Si3颗粒在准连续网络内重新析出。固溶时效处理后,室温抗压屈服强度达到1617 MPa,比烧结状态提高35.0%。在650℃时,复合材料的抗拉强度达到887 MPa,比烧结时提高了51.6%。热处理后力学性能的显著提高主要是由于α′马氏体强化、位错强化和固溶强化的共同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attaining superior high-temperature strength in (TiC + (TiZr)5Si3)/TA15 composites through spark plasma sintering and heat treatment
To further enhance the mechanical performance of as-sintered (TiC + (TiZr)5Si3)/TA15 composites, this study explores the influence of heat treatment on their microstructure and mechanical behavior. Following solution treatment at 1100 °C for 30 min and subsequent water quenching, the matrix transforms entirely into α′ martensite. The TiC particles retain a stable quasi-continuous network distribution, while the (TiZr)5Si3 particles dissolve back into the matrix. After quenching, the composite achieves outstanding compressive properties at room temperature, including a yield strength of 1442 MPa, an ultimate compressive strength of 2178 MPa, and a fracture strain of 25.8 %. At 650 °C, it demonstrates a tensile strength of 835 MPa and an elongation of 18.5 %. Subsequent aging at 600 °C for 300 min results in the α′ martensitic structure without significant decomposition, and (TiZr)5Si3 particles re-precipitate within the quasi-continuous network. After solution + aging treatment, the room-temperature compressive yield strength increases to 1617 MPa, representing a 35.0 % improvement over the as-sintered condition. At 650 °C, the tensile strength rises to 887 MPa, marking a 51.6 % increase compared to the as-sintered composite. The remarkable enhancement in mechanical performance following heat treatment is primarily attributed to the combined effects of α′ martensite strengthening, dislocation strengthening, and solid solution strengthening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信