Eliana Duarte , Dmitrii Pavlov , Maximilian Wiesmann
{"title":"量子图形模型的代数几何","authors":"Eliana Duarte , Dmitrii Pavlov , Maximilian Wiesmann","doi":"10.1016/j.aam.2025.102930","DOIUrl":null,"url":null,"abstract":"<div><div>Algebro-geometric methods have proven to be very successful in the study of graphical models in statistics. In this paper we introduce the foundations to carry out a similar study of their quantum counterparts. These quantum graphical models are families of quantum states satisfying certain locality or correlation conditions encoded by a graph. We lay out several ways to associate an algebraic variety to a quantum graphical model. The classical graphical models can be recovered from most of these varieties by restricting to quantum states represented by diagonal matrices. We study fundamental properties of these varieties and provide algorithms to compute their defining equations. Moreover, we study quantum information projections to quantum exponential families defined by graphs and prove a quantum analogue of Birch's Theorem.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102930"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic geometry of quantum graphical models\",\"authors\":\"Eliana Duarte , Dmitrii Pavlov , Maximilian Wiesmann\",\"doi\":\"10.1016/j.aam.2025.102930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Algebro-geometric methods have proven to be very successful in the study of graphical models in statistics. In this paper we introduce the foundations to carry out a similar study of their quantum counterparts. These quantum graphical models are families of quantum states satisfying certain locality or correlation conditions encoded by a graph. We lay out several ways to associate an algebraic variety to a quantum graphical model. The classical graphical models can be recovered from most of these varieties by restricting to quantum states represented by diagonal matrices. We study fundamental properties of these varieties and provide algorithms to compute their defining equations. Moreover, we study quantum information projections to quantum exponential families defined by graphs and prove a quantum analogue of Birch's Theorem.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"170 \",\"pages\":\"Article 102930\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000922\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000922","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Algebro-geometric methods have proven to be very successful in the study of graphical models in statistics. In this paper we introduce the foundations to carry out a similar study of their quantum counterparts. These quantum graphical models are families of quantum states satisfying certain locality or correlation conditions encoded by a graph. We lay out several ways to associate an algebraic variety to a quantum graphical model. The classical graphical models can be recovered from most of these varieties by restricting to quantum states represented by diagonal matrices. We study fundamental properties of these varieties and provide algorithms to compute their defining equations. Moreover, we study quantum information projections to quantum exponential families defined by graphs and prove a quantum analogue of Birch's Theorem.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.