{"title":"基于Seq2Seq的多尺度特征混合感知手足口病多区域预测","authors":"Bingbing Lei, Xuanjun Zhu, Tao Zhou, Yuxi Zhang","doi":"10.1371/journal.pone.0326206","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spatio-temporal features holistically remains limited, hindering the precise modeling of epidemic trends. To address these limitations, a novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of multi-scale features. First, the model utilizes graph structure modeling for multi-regional epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE) Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid perception across multi-scale spatio-temporal features. Within this encoder, graph-based feature representation and iterative convolution operations enable the capture of cumulative influence of neighboring regions across temporal and spatial dimensions, facilitating efficient extraction of spatio-temporal dependencies between multiple regions. Finally, the decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to improve the model's comprehension of temporal correlations and periodic features, further refining prediction accuracy and multi-step forecasting capabilities. Experimental results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline models. Additionally, the model performs well on single-region data from a city in southern China, confirming its strong generalization ability.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0326206"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing hybrid perception on multi-scale features for hand-foot-mouth disease multi-region prediction based on Seq2Seq.\",\"authors\":\"Bingbing Lei, Xuanjun Zhu, Tao Zhou, Yuxi Zhang\",\"doi\":\"10.1371/journal.pone.0326206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spatio-temporal features holistically remains limited, hindering the precise modeling of epidemic trends. To address these limitations, a novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of multi-scale features. First, the model utilizes graph structure modeling for multi-regional epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE) Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid perception across multi-scale spatio-temporal features. Within this encoder, graph-based feature representation and iterative convolution operations enable the capture of cumulative influence of neighboring regions across temporal and spatial dimensions, facilitating efficient extraction of spatio-temporal dependencies between multiple regions. Finally, the decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to improve the model's comprehension of temporal correlations and periodic features, further refining prediction accuracy and multi-step forecasting capabilities. Experimental results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline models. Additionally, the model performs well on single-region data from a city in southern China, confirming its strong generalization ability.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0326206\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0326206\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0326206","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Harnessing hybrid perception on multi-scale features for hand-foot-mouth disease multi-region prediction based on Seq2Seq.
Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spatio-temporal features holistically remains limited, hindering the precise modeling of epidemic trends. To address these limitations, a novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of multi-scale features. First, the model utilizes graph structure modeling for multi-regional epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE) Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid perception across multi-scale spatio-temporal features. Within this encoder, graph-based feature representation and iterative convolution operations enable the capture of cumulative influence of neighboring regions across temporal and spatial dimensions, facilitating efficient extraction of spatio-temporal dependencies between multiple regions. Finally, the decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to improve the model's comprehension of temporal correlations and periodic features, further refining prediction accuracy and multi-step forecasting capabilities. Experimental results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline models. Additionally, the model performs well on single-region data from a city in southern China, confirming its strong generalization ability.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage