两个α-最大均值方差保险人之间的再保险投资博弈。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-06-27 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0326125
Qian Zhang, Guoyong Zhou, Jing Fu
{"title":"两个α-最大均值方差保险人之间的再保险投资博弈。","authors":"Qian Zhang, Guoyong Zhou, Jing Fu","doi":"10.1371/journal.pone.0326125","DOIUrl":null,"url":null,"abstract":"<p><p>This paper examines a non-zero-sum stochastic differential reinsurance-investment game between two competitive insurers under the [Formula: see text]-maximin mean-variance criterion. Both insurers can purchase proportional reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, and each insurer is concerned with its terminal surplus and relative performance compared to its competitor. The insurers aim to maximize the [Formula: see text]-maximin mean-variance utility, which allows them to exhibit different attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman (HJB) equations for both insurers, we derive the [Formula: see text]-robust equilibrium reinsurance and investment strategies. Finally, several numerical examples are provided to illustrate the impact of some model parameters on the equilibrium strategies.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0326125"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reinsurance-investment game between two α-maxmin mean-variance insurers.\",\"authors\":\"Qian Zhang, Guoyong Zhou, Jing Fu\",\"doi\":\"10.1371/journal.pone.0326125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper examines a non-zero-sum stochastic differential reinsurance-investment game between two competitive insurers under the [Formula: see text]-maximin mean-variance criterion. Both insurers can purchase proportional reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, and each insurer is concerned with its terminal surplus and relative performance compared to its competitor. The insurers aim to maximize the [Formula: see text]-maximin mean-variance utility, which allows them to exhibit different attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman (HJB) equations for both insurers, we derive the [Formula: see text]-robust equilibrium reinsurance and investment strategies. Finally, several numerical examples are provided to illustrate the impact of some model parameters on the equilibrium strategies.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0326125\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0326125\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0326125","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文在[公式:见文]-均值-方差最大化准则下,研究了两个竞争保险公司之间的非零和随机微分再保险-投资博弈。两家保险公司都可以购买比例再保险,并投资于由一种无风险资产和一种风险资产组成的金融市场,每家保险公司都关注自己的终端盈余和相对于竞争对手的表现。保险公司的目标是最大化[公式:见文本]-最大化均值-方差效用,这使得他们对模型模糊性表现出不同的态度。通过求解两家保险公司的扩展Hamilton-Jacobi-Bellman (HJB)方程,我们推导出[公式:见文本]稳健均衡再保险和投资策略。最后,通过数值算例说明了模型参数对均衡策略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reinsurance-investment game between two α-maxmin mean-variance insurers.

Reinsurance-investment game between two α-maxmin mean-variance insurers.

Reinsurance-investment game between two α-maxmin mean-variance insurers.

Reinsurance-investment game between two α-maxmin mean-variance insurers.

This paper examines a non-zero-sum stochastic differential reinsurance-investment game between two competitive insurers under the [Formula: see text]-maximin mean-variance criterion. Both insurers can purchase proportional reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, and each insurer is concerned with its terminal surplus and relative performance compared to its competitor. The insurers aim to maximize the [Formula: see text]-maximin mean-variance utility, which allows them to exhibit different attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman (HJB) equations for both insurers, we derive the [Formula: see text]-robust equilibrium reinsurance and investment strategies. Finally, several numerical examples are provided to illustrate the impact of some model parameters on the equilibrium strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信