通过细菌人工染色体引导分析,定位新型atroviride木霉和harzum木霉菌株的木质纤维素水解基因簇。

IF 2.6 2区 生物学 Q2 MYCOLOGY
Paulo Henrique Campiteli, Maria Augusta Horta, Rafaela Rossi Rosolen, Juliano Sales Mendes, Carla Cristina da Silva, Danilo Sforça, Anete Pereira de Souza
{"title":"通过细菌人工染色体引导分析,定位新型atroviride木霉和harzum木霉菌株的木质纤维素水解基因簇。","authors":"Paulo Henrique Campiteli, Maria Augusta Horta, Rafaela Rossi Rosolen, Juliano Sales Mendes, Carla Cristina da Silva, Danilo Sforça, Anete Pereira de Souza","doi":"10.1080/00275514.2025.2496600","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biomass is a complex carbon source with recalcitrant properties whose degradation via industrial enzymatic hydrolysis is challenging, directly affecting the cost of reliable energy production. In nature, filamentous fungi, including <i>Trichoderma</i> species, degrade lignocellulose via an arsenal of hydrolytic and oxidative enzymes that act synergistically to process it into soluble sugar monomers. This work explored the genomic content of <i>Trichoderma atroviride</i> and <i>Trichoderma harzianum</i> strains with hydrolytic abilities by identifying regions possessing degradative enzyme-encoding genes, namely, hydrolytic clusters. We employed bacterial artificial chromosome (BAC) methodology to target specific genomic regions and explore their genetic organization, proximal gene context, and gene expression under degradative conditions. With this tool, it was possible to inspect the linear structure and expression profile of target hydrolytic-rich genomic regions. The present work offers a perspective on the organization of genome regions related to carbohydrate metabolism. This study revealed novel genes and genome regions that are positively regulated during cellulose degradation, contributing to elucidating differences in gene organization that potentially impact hydrolysis among <i>Trichoderma</i> species.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":" ","pages":"1-15"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting lignocellulolytic gene clusters in novel <i>Trichoderma atroviride</i> and <i>Trichoderma harzianum</i> strains through bacterial artificial chromosome-guided analysis.\",\"authors\":\"Paulo Henrique Campiteli, Maria Augusta Horta, Rafaela Rossi Rosolen, Juliano Sales Mendes, Carla Cristina da Silva, Danilo Sforça, Anete Pereira de Souza\",\"doi\":\"10.1080/00275514.2025.2496600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lignocellulosic biomass is a complex carbon source with recalcitrant properties whose degradation via industrial enzymatic hydrolysis is challenging, directly affecting the cost of reliable energy production. In nature, filamentous fungi, including <i>Trichoderma</i> species, degrade lignocellulose via an arsenal of hydrolytic and oxidative enzymes that act synergistically to process it into soluble sugar monomers. This work explored the genomic content of <i>Trichoderma atroviride</i> and <i>Trichoderma harzianum</i> strains with hydrolytic abilities by identifying regions possessing degradative enzyme-encoding genes, namely, hydrolytic clusters. We employed bacterial artificial chromosome (BAC) methodology to target specific genomic regions and explore their genetic organization, proximal gene context, and gene expression under degradative conditions. With this tool, it was possible to inspect the linear structure and expression profile of target hydrolytic-rich genomic regions. The present work offers a perspective on the organization of genome regions related to carbohydrate metabolism. This study revealed novel genes and genome regions that are positively regulated during cellulose degradation, contributing to elucidating differences in gene organization that potentially impact hydrolysis among <i>Trichoderma</i> species.</p>\",\"PeriodicalId\":18779,\"journal\":{\"name\":\"Mycologia\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/00275514.2025.2496600\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2025.2496600","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

木质纤维素生物质是一种复杂的碳源,具有顽固性,其通过工业酶水解降解具有挑战性,直接影响可靠能源生产的成本。在自然界中,包括木霉在内的丝状真菌通过一系列水解酶和氧化酶来降解木质纤维素,这些酶协同作用将其加工成可溶性糖单体。本工作通过鉴定具有降解酶编码基因的区域,即水解簇,探索了具有水解能力的atroviride木霉和harzianum木霉菌株的基因组内容。我们采用细菌人工染色体(BAC)方法,针对特定的基因组区域,探索它们的遗传组织、近端基因背景和降解条件下的基因表达。使用该工具,可以检查目标富含水解酶的基因组区域的线性结构和表达谱。本研究为研究与碳水化合物代谢相关的基因组区域的组织提供了新的视角。这项研究揭示了在纤维素降解过程中受到正调控的新基因和基因组区域,有助于阐明可能影响木霉水解的基因组织差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting lignocellulolytic gene clusters in novel Trichoderma atroviride and Trichoderma harzianum strains through bacterial artificial chromosome-guided analysis.

Lignocellulosic biomass is a complex carbon source with recalcitrant properties whose degradation via industrial enzymatic hydrolysis is challenging, directly affecting the cost of reliable energy production. In nature, filamentous fungi, including Trichoderma species, degrade lignocellulose via an arsenal of hydrolytic and oxidative enzymes that act synergistically to process it into soluble sugar monomers. This work explored the genomic content of Trichoderma atroviride and Trichoderma harzianum strains with hydrolytic abilities by identifying regions possessing degradative enzyme-encoding genes, namely, hydrolytic clusters. We employed bacterial artificial chromosome (BAC) methodology to target specific genomic regions and explore their genetic organization, proximal gene context, and gene expression under degradative conditions. With this tool, it was possible to inspect the linear structure and expression profile of target hydrolytic-rich genomic regions. The present work offers a perspective on the organization of genome regions related to carbohydrate metabolism. This study revealed novel genes and genome regions that are positively regulated during cellulose degradation, contributing to elucidating differences in gene organization that potentially impact hydrolysis among Trichoderma species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycologia
Mycologia 生物-真菌学
CiteScore
6.20
自引率
3.60%
发文量
56
审稿时长
4-8 weeks
期刊介绍: International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信