独立多晶原子薄膜的固有褶皱。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-27 DOI:10.1021/acsnano.5c02583
Jaehyung Yu, Colin Scheibner, Ce Liang, Thomas A. Witten, Vincenzo Vitelli* and Jiwoong Park*, 
{"title":"独立多晶原子薄膜的固有褶皱。","authors":"Jaehyung Yu,&nbsp;Colin Scheibner,&nbsp;Ce Liang,&nbsp;Thomas A. Witten,&nbsp;Vincenzo Vitelli* and Jiwoong Park*,&nbsp;","doi":"10.1021/acsnano.5c02583","DOIUrl":null,"url":null,"abstract":"<p >Atomically thin films, like transition metal dichalcogenides, can now be synthesized at wafer scale while maintaining monolayer thickness. At such extreme aspect ratios, atomistic simulations and existing experimental techniques are unable to directly predict or measure the mechanical effects of intrinsic features like polycrystallinity without the interference of pinned boundaries or solid substrates. To address this challenge, here we introduce a versatile approach: we realize large scale free-floating membranes on water and measure their mechanical properties using atomic force microscopy (AFM) and Raman spectroscopy adapted to water’s surface. We reveal that free-standing polycrystalline membranes spontaneously form large athermal wrinkles. These wrinkles differ from those of extrinsic origin in that their size and shape depend on an intrinsic mesoscopic feature of the 2D material: the polycrystalline grain size. We rationalize the relationship between grain size and wrinkle shape using continuum theory and minimal mathematical models. Finally, we demonstrate experimentally that the wrinkles alter the mechanical properties of the sheet, introducing dramatic softening and spatial heterogeneity in response to a point probe. The present work illuminates the mechanics of polycrystalline nanomaterials at extreme aspect ratios and suggests principles for engineering strain-controlled nanomechanical responses.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 27","pages":"24831–24840"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Wrinkling of Free-Standing Polycrystalline Atomically Thin Films\",\"authors\":\"Jaehyung Yu,&nbsp;Colin Scheibner,&nbsp;Ce Liang,&nbsp;Thomas A. Witten,&nbsp;Vincenzo Vitelli* and Jiwoong Park*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c02583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atomically thin films, like transition metal dichalcogenides, can now be synthesized at wafer scale while maintaining monolayer thickness. At such extreme aspect ratios, atomistic simulations and existing experimental techniques are unable to directly predict or measure the mechanical effects of intrinsic features like polycrystallinity without the interference of pinned boundaries or solid substrates. To address this challenge, here we introduce a versatile approach: we realize large scale free-floating membranes on water and measure their mechanical properties using atomic force microscopy (AFM) and Raman spectroscopy adapted to water’s surface. We reveal that free-standing polycrystalline membranes spontaneously form large athermal wrinkles. These wrinkles differ from those of extrinsic origin in that their size and shape depend on an intrinsic mesoscopic feature of the 2D material: the polycrystalline grain size. We rationalize the relationship between grain size and wrinkle shape using continuum theory and minimal mathematical models. Finally, we demonstrate experimentally that the wrinkles alter the mechanical properties of the sheet, introducing dramatic softening and spatial heterogeneity in response to a point probe. The present work illuminates the mechanics of polycrystalline nanomaterials at extreme aspect ratios and suggests principles for engineering strain-controlled nanomechanical responses.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 27\",\"pages\":\"24831–24840\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02583\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02583","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子薄膜,如过渡金属二硫族化合物,现在可以在保持单层厚度的情况下在晶圆尺度上合成。在这种极端的纵横比下,原子模拟和现有的实验技术无法在没有固定边界或固体衬底干扰的情况下直接预测或测量多晶度等内在特征的机械效应。为了解决这一挑战,我们介绍了一种通用的方法:我们在水中实现了大规模的自由漂浮膜,并使用原子力显微镜(AFM)和适用于水面的拉曼光谱测量其机械性能。我们发现独立的多晶膜自发形成大的非热皱。这些皱纹不同于那些外在来源的皱纹,因为它们的大小和形状取决于二维材料的内在介观特征:多晶晶粒尺寸。利用连续统理论和最小数学模型对晶粒尺寸与褶皱形状之间的关系进行了理性化。最后,我们通过实验证明,褶皱改变了薄片的机械性能,在点探针的作用下引入了戏剧性的软化和空间异质性。本研究阐明了多晶纳米材料在极端纵横比下的力学特性,并提出了工程应变控制纳米力学响应的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intrinsic Wrinkling of Free-Standing Polycrystalline Atomically Thin Films

Intrinsic Wrinkling of Free-Standing Polycrystalline Atomically Thin Films

Atomically thin films, like transition metal dichalcogenides, can now be synthesized at wafer scale while maintaining monolayer thickness. At such extreme aspect ratios, atomistic simulations and existing experimental techniques are unable to directly predict or measure the mechanical effects of intrinsic features like polycrystallinity without the interference of pinned boundaries or solid substrates. To address this challenge, here we introduce a versatile approach: we realize large scale free-floating membranes on water and measure their mechanical properties using atomic force microscopy (AFM) and Raman spectroscopy adapted to water’s surface. We reveal that free-standing polycrystalline membranes spontaneously form large athermal wrinkles. These wrinkles differ from those of extrinsic origin in that their size and shape depend on an intrinsic mesoscopic feature of the 2D material: the polycrystalline grain size. We rationalize the relationship between grain size and wrinkle shape using continuum theory and minimal mathematical models. Finally, we demonstrate experimentally that the wrinkles alter the mechanical properties of the sheet, introducing dramatic softening and spatial heterogeneity in response to a point probe. The present work illuminates the mechanics of polycrystalline nanomaterials at extreme aspect ratios and suggests principles for engineering strain-controlled nanomechanical responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信