几丁质核壳聚糖鞘纳米须作为水凝胶微球的多功能生物纳米纤维形态。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alec K Zackin, Subhash Kalidindi, Hyunmin Yi
{"title":"几丁质核壳聚糖鞘纳米须作为水凝胶微球的多功能生物纳米纤维形态。","authors":"Alec K Zackin, Subhash Kalidindi, Hyunmin Yi","doi":"10.1021/acsabm.5c00632","DOIUrl":null,"url":null,"abstract":"<p><p>Simple and tunable production of macroporous hydrogel microparticles for rapid protein quantification in a suspension array format remains a major challenge. We exploit biologically derived rigid nanofibers as a multifunctional modality in a robust micromolding method using a postfabrication bioconjugation approach to address this challenge. Specifically, chitin-core chitosan-sheath nanowhiskers (CSNW) with a tunable amine titer are prepared under mild deacetylation reaction conditions. Transmission electron microscopy, dynamic light scattering, and dynamic viscosity measurements show rigid bionanofibers with substantially lower viscosity compared to solubilized linear forms of chitosan and other biopolymers, suggesting improved handling and manufacturability. Fluorescent labeling studies on polyacrylamide-based microspheres fabricated via micromolding indicate stable and uniform incorporation of CSNW in hydrogel microspheres and the readily tunable chemical functionality of CSNW. Further, reliable fabrication using acrylate-modified CSNW as the primary cross-linker, along with selective and improved protein conjugation kinetics, attests to the macroporous network of the hydrogel microparticles and illustrates the multifunctionality of CSNW. We thus envision that our approach in harnessing potent bionanofibers and micromolding can be readily extended to produce a wide variety of multifaceted microscale materials with a multitude of desirable features with improved performances for applications such as rapid biosensing and biodiagnostics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitin-Core Chitosan-Sheath Nanowhiskers as a Multifunctional Bionanofiber Modality for Hydrogel Microspheres in a Micromolding-Based Fabrication-Conjugation Approach.\",\"authors\":\"Alec K Zackin, Subhash Kalidindi, Hyunmin Yi\",\"doi\":\"10.1021/acsabm.5c00632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simple and tunable production of macroporous hydrogel microparticles for rapid protein quantification in a suspension array format remains a major challenge. We exploit biologically derived rigid nanofibers as a multifunctional modality in a robust micromolding method using a postfabrication bioconjugation approach to address this challenge. Specifically, chitin-core chitosan-sheath nanowhiskers (CSNW) with a tunable amine titer are prepared under mild deacetylation reaction conditions. Transmission electron microscopy, dynamic light scattering, and dynamic viscosity measurements show rigid bionanofibers with substantially lower viscosity compared to solubilized linear forms of chitosan and other biopolymers, suggesting improved handling and manufacturability. Fluorescent labeling studies on polyacrylamide-based microspheres fabricated via micromolding indicate stable and uniform incorporation of CSNW in hydrogel microspheres and the readily tunable chemical functionality of CSNW. Further, reliable fabrication using acrylate-modified CSNW as the primary cross-linker, along with selective and improved protein conjugation kinetics, attests to the macroporous network of the hydrogel microparticles and illustrates the multifunctionality of CSNW. We thus envision that our approach in harnessing potent bionanofibers and micromolding can be readily extended to produce a wide variety of multifaceted microscale materials with a multitude of desirable features with improved performances for applications such as rapid biosensing and biodiagnostics.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

简单和可调的生产大孔水凝胶微颗粒快速定量蛋白悬浮阵列格式仍然是一个主要的挑战。我们利用生物衍生的刚性纳米纤维作为强大的微成型方法中的多功能模态,使用制造后的生物偶联方法来解决这一挑战。具体地说,在温和的脱乙酰反应条件下,制备了具有可调胺滴度的几丁质核壳聚糖鞘纳米须。透射电子显微镜、动态光散射和动态粘度测量表明,刚性生物纳米纤维的粘度比溶解线性形式的壳聚糖和其他生物聚合物低得多,这表明处理和制造能力得到了改善。通过微成型制备的聚丙烯酰胺基微球的荧光标记研究表明,CSNW在水凝胶微球中稳定均匀地掺入,并且CSNW的化学功能易于调节。此外,使用丙烯酸酯修饰的CSNW作为主要交联剂的可靠制备,以及选择性和改进的蛋白质偶联动力学,证明了水凝胶微粒的大孔网络,并说明了CSNW的多功能性。因此,我们设想,我们利用强效生物纳米纤维和微成型的方法可以很容易地扩展到生产各种各样的多方面的微尺度材料,这些材料具有许多理想的特征,并改善了诸如快速生物传感和生物诊断等应用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chitin-Core Chitosan-Sheath Nanowhiskers as a Multifunctional Bionanofiber Modality for Hydrogel Microspheres in a Micromolding-Based Fabrication-Conjugation Approach.

Simple and tunable production of macroporous hydrogel microparticles for rapid protein quantification in a suspension array format remains a major challenge. We exploit biologically derived rigid nanofibers as a multifunctional modality in a robust micromolding method using a postfabrication bioconjugation approach to address this challenge. Specifically, chitin-core chitosan-sheath nanowhiskers (CSNW) with a tunable amine titer are prepared under mild deacetylation reaction conditions. Transmission electron microscopy, dynamic light scattering, and dynamic viscosity measurements show rigid bionanofibers with substantially lower viscosity compared to solubilized linear forms of chitosan and other biopolymers, suggesting improved handling and manufacturability. Fluorescent labeling studies on polyacrylamide-based microspheres fabricated via micromolding indicate stable and uniform incorporation of CSNW in hydrogel microspheres and the readily tunable chemical functionality of CSNW. Further, reliable fabrication using acrylate-modified CSNW as the primary cross-linker, along with selective and improved protein conjugation kinetics, attests to the macroporous network of the hydrogel microparticles and illustrates the multifunctionality of CSNW. We thus envision that our approach in harnessing potent bionanofibers and micromolding can be readily extended to produce a wide variety of multifaceted microscale materials with a multitude of desirable features with improved performances for applications such as rapid biosensing and biodiagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信