云计算中用于增强负载平衡的受自然启发的优化算法:分类、比较分析和未来趋势的全面回顾

IF 8.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Farida Siddiqi Prity
{"title":"云计算中用于增强负载平衡的受自然启发的优化算法:分类、比较分析和未来趋势的全面回顾","authors":"Farida Siddiqi Prity","doi":"10.1016/j.swevo.2025.102053","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud computing ensures scalable, on-demand resource provisioning, yet efficient load balancing remains a challenge. Traditional methods often fail under dynamic workloads, prompting interest in nature-inspired optimization algorithms (NIOAs). This review examines 47 NIOAs applied to cloud load balancing, covering their principles, adaptations, and performance. A novel taxonomy classifies these algorithms across ten dimensions, supported by a decade-long literature survey (2014–2024). Comparative analyses and a simulation-based case study highlight their strengths, limitations, and applicability. Charts, graphs, and tables are used to clearly visualize and compare the results. The study identifies research gaps and offers recommendations, underscoring NIOAs’ potential for enhancing cloud performance.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"97 ","pages":"Article 102053"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature-Inspired optimization algorithms for enhanced load balancing in cloud computing: A comprehensive review with taxonomy, comparative analysis, and future trends\",\"authors\":\"Farida Siddiqi Prity\",\"doi\":\"10.1016/j.swevo.2025.102053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cloud computing ensures scalable, on-demand resource provisioning, yet efficient load balancing remains a challenge. Traditional methods often fail under dynamic workloads, prompting interest in nature-inspired optimization algorithms (NIOAs). This review examines 47 NIOAs applied to cloud load balancing, covering their principles, adaptations, and performance. A novel taxonomy classifies these algorithms across ten dimensions, supported by a decade-long literature survey (2014–2024). Comparative analyses and a simulation-based case study highlight their strengths, limitations, and applicability. Charts, graphs, and tables are used to clearly visualize and compare the results. The study identifies research gaps and offers recommendations, underscoring NIOAs’ potential for enhancing cloud performance.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"97 \",\"pages\":\"Article 102053\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225002111\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002111","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

云计算确保了可伸缩的按需资源供应,但高效的负载平衡仍然是一个挑战。传统方法在动态工作负载下常常失败,这促使人们对自然启发的优化算法(nioa)产生了兴趣。本文研究了应用于云负载平衡的47个nioa,涵盖了它们的原理、适应性和性能。在一项长达十年的文献调查(2014-2024)的支持下,一种新的分类法从十个维度对这些算法进行了分类。比较分析和基于模拟的案例研究突出了它们的优势、局限性和适用性。图表、图形和表格用于清晰地可视化和比较结果。该研究指出了研究差距并提出了建议,强调了nioa在提高云性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nature-Inspired optimization algorithms for enhanced load balancing in cloud computing: A comprehensive review with taxonomy, comparative analysis, and future trends
Cloud computing ensures scalable, on-demand resource provisioning, yet efficient load balancing remains a challenge. Traditional methods often fail under dynamic workloads, prompting interest in nature-inspired optimization algorithms (NIOAs). This review examines 47 NIOAs applied to cloud load balancing, covering their principles, adaptations, and performance. A novel taxonomy classifies these algorithms across ten dimensions, supported by a decade-long literature survey (2014–2024). Comparative analyses and a simulation-based case study highlight their strengths, limitations, and applicability. Charts, graphs, and tables are used to clearly visualize and compare the results. The study identifies research gaps and offers recommendations, underscoring NIOAs’ potential for enhancing cloud performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信