Ji Guo , Wenbo Jiang , Rui Zhang , Wenshu Fan , Jiachen Li , Guoming Lu , Hongwei Li
{"title":"针对混合经典量子神经网络的后门攻击","authors":"Ji Guo , Wenbo Jiang , Rui Zhang , Wenshu Fan , Jiachen Li , Guoming Lu , Hongwei Li","doi":"10.1016/j.neunet.2025.107776","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid Classical-Quantum Neural Networks (HQNNs) represent a promising advancement in Quantum Machine Learning (QML), yet their security has been rarely explored. In this paper, we present the first systematic study of backdoor attacks on HQNNs. We begin by proposing an attack framework and providing a theoretical analysis of the generalization bounds and minimum perturbation requirements for backdoor attacks on HQNNs. Next, we employ two classic backdoor attack methods on HQNNs and Convolutional Neural Networks (CNNs) to further investigate the robustness of HQNNs. Our experimental results demonstrate that HQNNs are more robust than CNNs, requiring more significant image modifications for successful attacks. Additionally, we introduce the Qcolor backdoor, which utilizes color shifts as triggers and employs the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize hyperparameters. Through extensive experiments, we demonstrate the effectiveness, stealthiness, and robustness of the Qcolor backdoor.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"191 ","pages":"Article 107776"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backdoor attacks against Hybrid Classical-Quantum Neural Networks\",\"authors\":\"Ji Guo , Wenbo Jiang , Rui Zhang , Wenshu Fan , Jiachen Li , Guoming Lu , Hongwei Li\",\"doi\":\"10.1016/j.neunet.2025.107776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid Classical-Quantum Neural Networks (HQNNs) represent a promising advancement in Quantum Machine Learning (QML), yet their security has been rarely explored. In this paper, we present the first systematic study of backdoor attacks on HQNNs. We begin by proposing an attack framework and providing a theoretical analysis of the generalization bounds and minimum perturbation requirements for backdoor attacks on HQNNs. Next, we employ two classic backdoor attack methods on HQNNs and Convolutional Neural Networks (CNNs) to further investigate the robustness of HQNNs. Our experimental results demonstrate that HQNNs are more robust than CNNs, requiring more significant image modifications for successful attacks. Additionally, we introduce the Qcolor backdoor, which utilizes color shifts as triggers and employs the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize hyperparameters. Through extensive experiments, we demonstrate the effectiveness, stealthiness, and robustness of the Qcolor backdoor.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"191 \",\"pages\":\"Article 107776\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025006562\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025006562","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Backdoor attacks against Hybrid Classical-Quantum Neural Networks
Hybrid Classical-Quantum Neural Networks (HQNNs) represent a promising advancement in Quantum Machine Learning (QML), yet their security has been rarely explored. In this paper, we present the first systematic study of backdoor attacks on HQNNs. We begin by proposing an attack framework and providing a theoretical analysis of the generalization bounds and minimum perturbation requirements for backdoor attacks on HQNNs. Next, we employ two classic backdoor attack methods on HQNNs and Convolutional Neural Networks (CNNs) to further investigate the robustness of HQNNs. Our experimental results demonstrate that HQNNs are more robust than CNNs, requiring more significant image modifications for successful attacks. Additionally, we introduce the Qcolor backdoor, which utilizes color shifts as triggers and employs the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize hyperparameters. Through extensive experiments, we demonstrate the effectiveness, stealthiness, and robustness of the Qcolor backdoor.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.