通过铝酸钙水泥的活性颗粒聚集,提高了聚丙烯酰胺-单宁水凝胶与混凝土表面的粘附强度

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Shuaizu Gu , Yuan Hu , Dandan Sun , Jingwen Wang , Pan Feng , Junyuan Guo , Linglin Xu , Kai Wu
{"title":"通过铝酸钙水泥的活性颗粒聚集,提高了聚丙烯酰胺-单宁水凝胶与混凝土表面的粘附强度","authors":"Shuaizu Gu ,&nbsp;Yuan Hu ,&nbsp;Dandan Sun ,&nbsp;Jingwen Wang ,&nbsp;Pan Feng ,&nbsp;Junyuan Guo ,&nbsp;Linglin Xu ,&nbsp;Kai Wu","doi":"10.1016/j.coco.2025.102515","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel-based functional devices hold transformative potential for application in construction, yet reliable interfacial adhesion to concrete remains a critical barrier for the large-scale implementation. In this study, the reactive particle aggregation behavior of calcium aluminate cement (CA) is strategically incorporated into polyacrylamide-tannic acid (PAM-TA) hydrogel to provide reliable adhesion to cracked concrete. CA aggregation promotes the formation of rigid aggregates within the hydrogel network, generating a marked modulus gradient. This gradient induces localized stress concentration zones around the aggregates. While moderately reducing bulk toughness and elongation, these zones prioritize triggering concentrated energy dissipation prior to interfacial failure, thereby doubling the concrete adhesion strength (48.05 kPa) versus CA-free control. The optimized hydrogel further demonstrates rapid, watertight sealing of variable-width concrete cracks within 10 s, establishing its practical potential as a high-performance temporary sealant. This study presents a novel strategy to enhance the adhesive strength of hydrogels, while also paving a feasible path for the development of smart building materials.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"58 ","pages":"Article 102515"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced adhesion strength of polyacrylamide-tannic hydrogel to concrete surface through reactive particle aggregation of calcium aluminate cement\",\"authors\":\"Shuaizu Gu ,&nbsp;Yuan Hu ,&nbsp;Dandan Sun ,&nbsp;Jingwen Wang ,&nbsp;Pan Feng ,&nbsp;Junyuan Guo ,&nbsp;Linglin Xu ,&nbsp;Kai Wu\",\"doi\":\"10.1016/j.coco.2025.102515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel-based functional devices hold transformative potential for application in construction, yet reliable interfacial adhesion to concrete remains a critical barrier for the large-scale implementation. In this study, the reactive particle aggregation behavior of calcium aluminate cement (CA) is strategically incorporated into polyacrylamide-tannic acid (PAM-TA) hydrogel to provide reliable adhesion to cracked concrete. CA aggregation promotes the formation of rigid aggregates within the hydrogel network, generating a marked modulus gradient. This gradient induces localized stress concentration zones around the aggregates. While moderately reducing bulk toughness and elongation, these zones prioritize triggering concentrated energy dissipation prior to interfacial failure, thereby doubling the concrete adhesion strength (48.05 kPa) versus CA-free control. The optimized hydrogel further demonstrates rapid, watertight sealing of variable-width concrete cracks within 10 s, establishing its practical potential as a high-performance temporary sealant. This study presents a novel strategy to enhance the adhesive strength of hydrogels, while also paving a feasible path for the development of smart building materials.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"58 \",\"pages\":\"Article 102515\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925002682\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925002682","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

基于水凝胶的功能装置在建筑应用中具有革命性的潜力,但与混凝土的可靠界面附着力仍然是大规模实施的关键障碍。在本研究中,将铝酸钙水泥(CA)的活性颗粒聚集行为策略性地融入聚丙烯酰胺-单宁酸(PAM-TA)水凝胶中,为开裂的混凝土提供可靠的附着力。CA聚集促进水凝胶网络内刚性聚集体的形成,产生显著的模量梯度。这种梯度在聚集体周围形成局部应力集中区。在适度降低体积韧性和伸长率的同时,这些区域在界面破坏之前优先触发集中能量耗散,从而使混凝土的附着强度(48.05 kPa)比无ca控制增加一倍。优化后的水凝胶进一步证明了在10秒内快速、水密地封堵变宽混凝土裂缝,确立了其作为高性能临时密封剂的实际潜力。本研究提出了一种提高水凝胶粘接强度的新策略,同时也为智能建筑材料的发展铺平了一条可行的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced adhesion strength of polyacrylamide-tannic hydrogel to concrete surface through reactive particle aggregation of calcium aluminate cement
Hydrogel-based functional devices hold transformative potential for application in construction, yet reliable interfacial adhesion to concrete remains a critical barrier for the large-scale implementation. In this study, the reactive particle aggregation behavior of calcium aluminate cement (CA) is strategically incorporated into polyacrylamide-tannic acid (PAM-TA) hydrogel to provide reliable adhesion to cracked concrete. CA aggregation promotes the formation of rigid aggregates within the hydrogel network, generating a marked modulus gradient. This gradient induces localized stress concentration zones around the aggregates. While moderately reducing bulk toughness and elongation, these zones prioritize triggering concentrated energy dissipation prior to interfacial failure, thereby doubling the concrete adhesion strength (48.05 kPa) versus CA-free control. The optimized hydrogel further demonstrates rapid, watertight sealing of variable-width concrete cracks within 10 s, establishing its practical potential as a high-performance temporary sealant. This study presents a novel strategy to enhance the adhesive strength of hydrogels, while also paving a feasible path for the development of smart building materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信