双功能分层水凝胶用于太阳界面蒸发和吸收为主的电磁干扰屏蔽

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yulin Zhang , Haorong Li , Qianrong Hu , Yingying Liu , Jing Chen , Yu Hu , Chang Lu
{"title":"双功能分层水凝胶用于太阳界面蒸发和吸收为主的电磁干扰屏蔽","authors":"Yulin Zhang ,&nbsp;Haorong Li ,&nbsp;Qianrong Hu ,&nbsp;Yingying Liu ,&nbsp;Jing Chen ,&nbsp;Yu Hu ,&nbsp;Chang Lu","doi":"10.1016/j.seppur.2025.134146","DOIUrl":null,"url":null,"abstract":"<div><div>The global freshwater crisis and escalating electromagnetic interference (EMI) pollution necessitate the development of multifunctional materials for sustainable water purification and electromagnetic protection. Herein, we propose a biomimetic hierarchical hydrogel featuring a network of carbon nanotubes (CNTs) bridging reduced graphene oxide@polyacrylamide (rGO@PAM) particles within a sodium alginate (SA) matrix to address this dual demand. The rGO@PAM particles were synthesized via in situ reduction of graphene oxide (GO) adsorbed on chemically crosslinked PAM particles, ensuring structural stability and enhanced photothermal conversion. CNTs act as bridging units to construct a three-dimensional thermal-electrical network, synergizing with the vertically aligned porous SA matrix formed by freeze-drying and ionic crosslinking. This unique architecture enables efficient solar interface evaporation (1.80 kg·m<sup>-2</sup>·h<sup>-1</sup> under 1.0 sun) with exceptional salt resistance (&gt;15 wt% brine) and long-term stability, while the hierarchical conductive network achieves a remarkable EMI shielding effectiveness of 66.10 dB in the hydrated state through absorption-dominated mechanisms. The work offers a scalable paradigm for multifunctional hydrogels in sustainable water purification and flexible electronics protection.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"376 ","pages":"Article 134146"},"PeriodicalIF":9.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-functional hierarchical hydrogel for solar interface evaporation and absorption-dominated EMI shielding\",\"authors\":\"Yulin Zhang ,&nbsp;Haorong Li ,&nbsp;Qianrong Hu ,&nbsp;Yingying Liu ,&nbsp;Jing Chen ,&nbsp;Yu Hu ,&nbsp;Chang Lu\",\"doi\":\"10.1016/j.seppur.2025.134146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global freshwater crisis and escalating electromagnetic interference (EMI) pollution necessitate the development of multifunctional materials for sustainable water purification and electromagnetic protection. Herein, we propose a biomimetic hierarchical hydrogel featuring a network of carbon nanotubes (CNTs) bridging reduced graphene oxide@polyacrylamide (rGO@PAM) particles within a sodium alginate (SA) matrix to address this dual demand. The rGO@PAM particles were synthesized via in situ reduction of graphene oxide (GO) adsorbed on chemically crosslinked PAM particles, ensuring structural stability and enhanced photothermal conversion. CNTs act as bridging units to construct a three-dimensional thermal-electrical network, synergizing with the vertically aligned porous SA matrix formed by freeze-drying and ionic crosslinking. This unique architecture enables efficient solar interface evaporation (1.80 kg·m<sup>-2</sup>·h<sup>-1</sup> under 1.0 sun) with exceptional salt resistance (&gt;15 wt% brine) and long-term stability, while the hierarchical conductive network achieves a remarkable EMI shielding effectiveness of 66.10 dB in the hydrated state through absorption-dominated mechanisms. The work offers a scalable paradigm for multifunctional hydrogels in sustainable water purification and flexible electronics protection.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"376 \",\"pages\":\"Article 134146\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586625027431\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625027431","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球淡水危机和不断升级的电磁干扰(EMI)污染要求开发用于可持续水净化和电磁防护的多功能材料。在此,我们提出了一种仿生分层水凝胶,其特征是碳纳米管(CNTs)网络在海藻酸钠(SA)基质中桥接还原石墨烯oxide@polyacrylamide (rGO@PAM)颗粒,以解决这一双重需求。通过原位还原吸附在化学交联PAM颗粒上的氧化石墨烯(GO)合成rGO@PAM颗粒,确保了结构稳定性和增强的光热转换。CNTs作为桥接单元,与经冷冻干燥和离子交联形成的垂直排列的多孔SA基体协同作用,构建三维热电网络。这种独特的结构实现了高效的太阳界面蒸发(1.0太阳下1.80 kg·m-2·h-1),具有优异的耐盐性(15%盐水)和长期稳定性,而分层导电网络通过吸收主导机制在水合状态下实现了66.10 dB的显著EMI屏蔽效率。这项工作为多功能水凝胶在可持续水净化和柔性电子保护方面提供了一个可扩展的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-functional hierarchical hydrogel for solar interface evaporation and absorption-dominated EMI shielding

Dual-functional hierarchical hydrogel for solar interface evaporation and absorption-dominated EMI shielding
The global freshwater crisis and escalating electromagnetic interference (EMI) pollution necessitate the development of multifunctional materials for sustainable water purification and electromagnetic protection. Herein, we propose a biomimetic hierarchical hydrogel featuring a network of carbon nanotubes (CNTs) bridging reduced graphene oxide@polyacrylamide (rGO@PAM) particles within a sodium alginate (SA) matrix to address this dual demand. The rGO@PAM particles were synthesized via in situ reduction of graphene oxide (GO) adsorbed on chemically crosslinked PAM particles, ensuring structural stability and enhanced photothermal conversion. CNTs act as bridging units to construct a three-dimensional thermal-electrical network, synergizing with the vertically aligned porous SA matrix formed by freeze-drying and ionic crosslinking. This unique architecture enables efficient solar interface evaporation (1.80 kg·m-2·h-1 under 1.0 sun) with exceptional salt resistance (>15 wt% brine) and long-term stability, while the hierarchical conductive network achieves a remarkable EMI shielding effectiveness of 66.10 dB in the hydrated state through absorption-dominated mechanisms. The work offers a scalable paradigm for multifunctional hydrogels in sustainable water purification and flexible electronics protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信