{"title":"低温电镜结构分析揭示了延伸因子G2 (EF-G2)在分枝杆菌中的独特作用。","authors":"Priya Baid, Jayati Sengupta","doi":"10.1111/febs.70161","DOIUrl":null,"url":null,"abstract":"<p><p>The gene-encoding translation elongation factor G (EF-G) has undergone gene duplication across various bacterial species including Mycobacteria, and in mammalian mitochondria, leading to the emergence of the paralogue elongation factor G2 (EF-G2). Our study reveals that mycobacterial EF-G2, unlike EF-G1, neither participates in ribosome-recycling nor significantly contributes to overall translation, suggesting that it plays an alternative role in Mycobacteria. Remarkably, our investigation found a significant overexpression of mycobacterial EF-G2 during the stationary growth phase. Moreover, EF-G2 lacks ribosome-dependent GTPase activity, an observation consistent with previous reports. Cryo-EM analysis of the M. smegmatis 70S ribosome purified from the nutrient-starved (stationary) phase and complexed with EF-G2 unveiled the structural basis for its inability to hydrolyse GTP in a ribosome-dependent manner. Furthermore, we report an unprecedented binding mode of two EF-G2 copies on the 50S ribosomal subunit that impedes subunit association, thereby preventing the formation of active 70S ribosomes. Thus, instead of performing canonical functions, mycobacterial EF-G2 acts as a translation repressor during nutrient starvation. Altogether, our findings shed light on the multifaceted mechanisms by which EF-G2 modulates protein synthesis under nutrient-limited conditions, providing insights into adaptive strategies employed by Mycobacteria to survive in hostile environments.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structural analyses reveal a unique role for elongation factor G2 (EF-G2) in Mycobacteria.\",\"authors\":\"Priya Baid, Jayati Sengupta\",\"doi\":\"10.1111/febs.70161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gene-encoding translation elongation factor G (EF-G) has undergone gene duplication across various bacterial species including Mycobacteria, and in mammalian mitochondria, leading to the emergence of the paralogue elongation factor G2 (EF-G2). Our study reveals that mycobacterial EF-G2, unlike EF-G1, neither participates in ribosome-recycling nor significantly contributes to overall translation, suggesting that it plays an alternative role in Mycobacteria. Remarkably, our investigation found a significant overexpression of mycobacterial EF-G2 during the stationary growth phase. Moreover, EF-G2 lacks ribosome-dependent GTPase activity, an observation consistent with previous reports. Cryo-EM analysis of the M. smegmatis 70S ribosome purified from the nutrient-starved (stationary) phase and complexed with EF-G2 unveiled the structural basis for its inability to hydrolyse GTP in a ribosome-dependent manner. Furthermore, we report an unprecedented binding mode of two EF-G2 copies on the 50S ribosomal subunit that impedes subunit association, thereby preventing the formation of active 70S ribosomes. Thus, instead of performing canonical functions, mycobacterial EF-G2 acts as a translation repressor during nutrient starvation. Altogether, our findings shed light on the multifaceted mechanisms by which EF-G2 modulates protein synthesis under nutrient-limited conditions, providing insights into adaptive strategies employed by Mycobacteria to survive in hostile environments.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cryo-EM structural analyses reveal a unique role for elongation factor G2 (EF-G2) in Mycobacteria.
The gene-encoding translation elongation factor G (EF-G) has undergone gene duplication across various bacterial species including Mycobacteria, and in mammalian mitochondria, leading to the emergence of the paralogue elongation factor G2 (EF-G2). Our study reveals that mycobacterial EF-G2, unlike EF-G1, neither participates in ribosome-recycling nor significantly contributes to overall translation, suggesting that it plays an alternative role in Mycobacteria. Remarkably, our investigation found a significant overexpression of mycobacterial EF-G2 during the stationary growth phase. Moreover, EF-G2 lacks ribosome-dependent GTPase activity, an observation consistent with previous reports. Cryo-EM analysis of the M. smegmatis 70S ribosome purified from the nutrient-starved (stationary) phase and complexed with EF-G2 unveiled the structural basis for its inability to hydrolyse GTP in a ribosome-dependent manner. Furthermore, we report an unprecedented binding mode of two EF-G2 copies on the 50S ribosomal subunit that impedes subunit association, thereby preventing the formation of active 70S ribosomes. Thus, instead of performing canonical functions, mycobacterial EF-G2 acts as a translation repressor during nutrient starvation. Altogether, our findings shed light on the multifaceted mechanisms by which EF-G2 modulates protein synthesis under nutrient-limited conditions, providing insights into adaptive strategies employed by Mycobacteria to survive in hostile environments.