基于dna的环境毒物检测生物分析技术的进展与展望。

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-06-02 eCollection Date: 2025-06-23 DOI:10.1021/jacsau.5c00398
Siqian Liu, Benfeng Xu, Chongyang Li, Yanlin Ren, Hao Gan, Shi Kuang, Chunyang Lei, Zhou Nie
{"title":"基于dna的环境毒物检测生物分析技术的进展与展望。","authors":"Siqian Liu, Benfeng Xu, Chongyang Li, Yanlin Ren, Hao Gan, Shi Kuang, Chunyang Lei, Zhou Nie","doi":"10.1021/jacsau.5c00398","DOIUrl":null,"url":null,"abstract":"<p><p>The mounting global crisis of environmental pollution necessitates transformative advances in analytical technologies that combine speed, precision, and field applicability. To meet this demand, next-generation analytical platforms must achieve seamless integration of two critical features: molecular-level recognition fidelity and reliable signal transduction. DNA nanotechnology leverages sequence-specific molecular recognition and programmable self-assembly to enable both natural (e.g., riboswitches) and synthetic (e.g., aptamers, DNAzymes) biosensing modalities. The structural programmability and predictable Watson-Crick base pairing of DNA provide a modular framework for designing next-generation biosensors with tunable specificity and sensitivity. When integrated with portable point-of-care (POC) platforms, these biosensing systems enable field-deployable, rapid, and operator-agnostic detection of toxicants across diverse matrixes, making them highly suitable for complex environmental monitoring tasks. This perspective highlights the potential and strategic approaches for constructing biosensors utilizing DNA-based recognition elements and structural materials. It explores the progress in field-deployable DNA-based biosensors, which are revolutionizing the on-site detection of environmental toxicants. We also discuss the current challenges and future perspectives for DNA-based biosensing systems in environmental pollution monitoring, offering insights into their broader applications.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 6","pages":"2443-2462"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements and Prospects in DNA-Based Bioanalytical Technology for Environmental Toxicant Detection.\",\"authors\":\"Siqian Liu, Benfeng Xu, Chongyang Li, Yanlin Ren, Hao Gan, Shi Kuang, Chunyang Lei, Zhou Nie\",\"doi\":\"10.1021/jacsau.5c00398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mounting global crisis of environmental pollution necessitates transformative advances in analytical technologies that combine speed, precision, and field applicability. To meet this demand, next-generation analytical platforms must achieve seamless integration of two critical features: molecular-level recognition fidelity and reliable signal transduction. DNA nanotechnology leverages sequence-specific molecular recognition and programmable self-assembly to enable both natural (e.g., riboswitches) and synthetic (e.g., aptamers, DNAzymes) biosensing modalities. The structural programmability and predictable Watson-Crick base pairing of DNA provide a modular framework for designing next-generation biosensors with tunable specificity and sensitivity. When integrated with portable point-of-care (POC) platforms, these biosensing systems enable field-deployable, rapid, and operator-agnostic detection of toxicants across diverse matrixes, making them highly suitable for complex environmental monitoring tasks. This perspective highlights the potential and strategic approaches for constructing biosensors utilizing DNA-based recognition elements and structural materials. It explores the progress in field-deployable DNA-based biosensors, which are revolutionizing the on-site detection of environmental toxicants. We also discuss the current challenges and future perspectives for DNA-based biosensing systems in environmental pollution monitoring, offering insights into their broader applications.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 6\",\"pages\":\"2443-2462\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.5c00398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

日益严重的全球环境污染危机需要分析技术的变革性进步,这些技术结合了速度、精度和现场适用性。为了满足这一需求,下一代分析平台必须实现两个关键特征的无缝集成:分子水平识别保真度和可靠的信号转导。DNA纳米技术利用序列特异性分子识别和可编程自组装来实现自然(例如,核糖开关)和合成(例如,适体,DNAzymes)生物传感模式。DNA的结构可编程性和可预测的沃森-克里克碱基配对为设计具有可调特异性和灵敏度的下一代生物传感器提供了模块化框架。当与便携式护理点(POC)平台集成时,这些生物传感系统可以实现现场部署,快速且与操作员无关的多种基质毒物检测,使其非常适合复杂的环境监测任务。这一观点强调了利用基于dna的识别元件和结构材料构建生物传感器的潜力和战略方法。它探讨了现场可部署的基于dna的生物传感器的进展,这些传感器正在彻底改变环境毒物的现场检测。我们还讨论了基于dna的生物传感系统在环境污染监测中的当前挑战和未来前景,并为其更广泛的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements and Prospects in DNA-Based Bioanalytical Technology for Environmental Toxicant Detection.

The mounting global crisis of environmental pollution necessitates transformative advances in analytical technologies that combine speed, precision, and field applicability. To meet this demand, next-generation analytical platforms must achieve seamless integration of two critical features: molecular-level recognition fidelity and reliable signal transduction. DNA nanotechnology leverages sequence-specific molecular recognition and programmable self-assembly to enable both natural (e.g., riboswitches) and synthetic (e.g., aptamers, DNAzymes) biosensing modalities. The structural programmability and predictable Watson-Crick base pairing of DNA provide a modular framework for designing next-generation biosensors with tunable specificity and sensitivity. When integrated with portable point-of-care (POC) platforms, these biosensing systems enable field-deployable, rapid, and operator-agnostic detection of toxicants across diverse matrixes, making them highly suitable for complex environmental monitoring tasks. This perspective highlights the potential and strategic approaches for constructing biosensors utilizing DNA-based recognition elements and structural materials. It explores the progress in field-deployable DNA-based biosensors, which are revolutionizing the on-site detection of environmental toxicants. We also discuss the current challenges and future perspectives for DNA-based biosensing systems in environmental pollution monitoring, offering insights into their broader applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信