Ruojia Huang, Rui Luo, Jing Lan, Zhanhao Lu, Hua-Ji Qiu, Tao Wang, Yuan Sun
{"title":"非洲猪瘟病毒的多基因家族基因编码蛋白:在进化、细胞趋向性、免疫逃避和发病机制中的作用。","authors":"Ruojia Huang, Rui Luo, Jing Lan, Zhanhao Lu, Hua-Ji Qiu, Tao Wang, Yuan Sun","doi":"10.3390/v17060865","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever virus (ASFV), the causative agent of African swine fever (ASF), poses a catastrophic threat to global swine industries through its capacity for immune subversion and rapid evolution. Multigene family genes (MGFs)-encoded proteins serve as molecular hubs governing viral evolution, immune evasion, cell tropism, and disease pathogenesis. This review synthesizes structural and functional evidence demonstrating that MGFs-encoded proteins suppress both interferon signaling and inflammasome activation, while their genomic plasticity in variable terminal regions drives strain diversification and adaptation. Translationally, targeted deletion of immunomodulatory MGFs enables the rational design of live attenuated vaccines that improve protective efficacy while minimizing residual virulence. Moreover, hypervariable MGFs provide strain-specific signatures for PCR-based diagnostics and phylogeographic tracking, directly addressing outbreak surveillance challenges. By unifying virology with translational innovation, this review establishes MGFs as priority targets for next-generation ASF countermeasures.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197721/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Multigene Family Genes-Encoded Proteins of African Swine Fever Virus: Roles in Evolution, Cell Tropism, Immune Evasion, and Pathogenesis.\",\"authors\":\"Ruojia Huang, Rui Luo, Jing Lan, Zhanhao Lu, Hua-Ji Qiu, Tao Wang, Yuan Sun\",\"doi\":\"10.3390/v17060865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African swine fever virus (ASFV), the causative agent of African swine fever (ASF), poses a catastrophic threat to global swine industries through its capacity for immune subversion and rapid evolution. Multigene family genes (MGFs)-encoded proteins serve as molecular hubs governing viral evolution, immune evasion, cell tropism, and disease pathogenesis. This review synthesizes structural and functional evidence demonstrating that MGFs-encoded proteins suppress both interferon signaling and inflammasome activation, while their genomic plasticity in variable terminal regions drives strain diversification and adaptation. Translationally, targeted deletion of immunomodulatory MGFs enables the rational design of live attenuated vaccines that improve protective efficacy while minimizing residual virulence. Moreover, hypervariable MGFs provide strain-specific signatures for PCR-based diagnostics and phylogeographic tracking, directly addressing outbreak surveillance challenges. By unifying virology with translational innovation, this review establishes MGFs as priority targets for next-generation ASF countermeasures.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17060865\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17060865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
The Multigene Family Genes-Encoded Proteins of African Swine Fever Virus: Roles in Evolution, Cell Tropism, Immune Evasion, and Pathogenesis.
African swine fever virus (ASFV), the causative agent of African swine fever (ASF), poses a catastrophic threat to global swine industries through its capacity for immune subversion and rapid evolution. Multigene family genes (MGFs)-encoded proteins serve as molecular hubs governing viral evolution, immune evasion, cell tropism, and disease pathogenesis. This review synthesizes structural and functional evidence demonstrating that MGFs-encoded proteins suppress both interferon signaling and inflammasome activation, while their genomic plasticity in variable terminal regions drives strain diversification and adaptation. Translationally, targeted deletion of immunomodulatory MGFs enables the rational design of live attenuated vaccines that improve protective efficacy while minimizing residual virulence. Moreover, hypervariable MGFs provide strain-specific signatures for PCR-based diagnostics and phylogeographic tracking, directly addressing outbreak surveillance challenges. By unifying virology with translational innovation, this review establishes MGFs as priority targets for next-generation ASF countermeasures.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.