Elhadji Birane Mboup, Marie-Ève Hamelin, Julia Dubois, Manuel Rosa-Calatrava, Guy Boivin
{"title":"人肺病毒疫苗的研制","authors":"Elhadji Birane Mboup, Marie-Ève Hamelin, Julia Dubois, Manuel Rosa-Calatrava, Guy Boivin","doi":"10.3390/vaccines13060569","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pneumoviruses are etiologic agents of respiratory tract infections and a major cause of morbidity and mortality worldwide, particularly affecting young children, the elderly, and individuals with underlying clinical conditions. These viruses are associated with a significant burden, particularly in low- and middle-income countries, where reported deaths attributable to respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) in young children are important. Recent developments have been noted in the prevention of pneumoviral infections.</p><p><strong>Method: </strong>In this review, we analyzed clinical trials of the approved RSV vaccines, as well as the recent prominent platform technologies used in RSV vaccine research. In addition, we discussed combination vaccines targeting RSV, HMPV, and Human Parainfluenza Virus Type 3 (HPIV3) that have entered clinical trials.</p><p><strong>Results: </strong>Recent advancements include the approval of three RSV vaccine candidates: AREXVY<sup>®</sup>(GSK), ABRYSVO<sup>®</sup>(Pfizer), and mRESVIA<sup>®</sup>(Moderna). These vaccines are primarily intended for older adults, with ABRYSVO<sup>®</sup> also capable of providing passive immunization to infants via maternal administration. The review highlights RSV vaccine platform technologies and combination vaccines currently being evaluated in clinical settings.</p><p><strong>Conclusions: </strong>While significant progress has been made in RSV vaccine development, especially with three approved candidates, the development of vaccines for HMPV remains an unmet medical need. Ongoing research in combination vaccines holds promise for broader protection against multiple respiratory viruses in the future.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 6","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vaccine Development for Human Pneumoviruses.\",\"authors\":\"Elhadji Birane Mboup, Marie-Ève Hamelin, Julia Dubois, Manuel Rosa-Calatrava, Guy Boivin\",\"doi\":\"10.3390/vaccines13060569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pneumoviruses are etiologic agents of respiratory tract infections and a major cause of morbidity and mortality worldwide, particularly affecting young children, the elderly, and individuals with underlying clinical conditions. These viruses are associated with a significant burden, particularly in low- and middle-income countries, where reported deaths attributable to respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) in young children are important. Recent developments have been noted in the prevention of pneumoviral infections.</p><p><strong>Method: </strong>In this review, we analyzed clinical trials of the approved RSV vaccines, as well as the recent prominent platform technologies used in RSV vaccine research. In addition, we discussed combination vaccines targeting RSV, HMPV, and Human Parainfluenza Virus Type 3 (HPIV3) that have entered clinical trials.</p><p><strong>Results: </strong>Recent advancements include the approval of three RSV vaccine candidates: AREXVY<sup>®</sup>(GSK), ABRYSVO<sup>®</sup>(Pfizer), and mRESVIA<sup>®</sup>(Moderna). These vaccines are primarily intended for older adults, with ABRYSVO<sup>®</sup> also capable of providing passive immunization to infants via maternal administration. The review highlights RSV vaccine platform technologies and combination vaccines currently being evaluated in clinical settings.</p><p><strong>Conclusions: </strong>While significant progress has been made in RSV vaccine development, especially with three approved candidates, the development of vaccines for HMPV remains an unmet medical need. Ongoing research in combination vaccines holds promise for broader protection against multiple respiratory viruses in the future.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines13060569\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13060569","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Background: Pneumoviruses are etiologic agents of respiratory tract infections and a major cause of morbidity and mortality worldwide, particularly affecting young children, the elderly, and individuals with underlying clinical conditions. These viruses are associated with a significant burden, particularly in low- and middle-income countries, where reported deaths attributable to respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) in young children are important. Recent developments have been noted in the prevention of pneumoviral infections.
Method: In this review, we analyzed clinical trials of the approved RSV vaccines, as well as the recent prominent platform technologies used in RSV vaccine research. In addition, we discussed combination vaccines targeting RSV, HMPV, and Human Parainfluenza Virus Type 3 (HPIV3) that have entered clinical trials.
Results: Recent advancements include the approval of three RSV vaccine candidates: AREXVY®(GSK), ABRYSVO®(Pfizer), and mRESVIA®(Moderna). These vaccines are primarily intended for older adults, with ABRYSVO® also capable of providing passive immunization to infants via maternal administration. The review highlights RSV vaccine platform technologies and combination vaccines currently being evaluated in clinical settings.
Conclusions: While significant progress has been made in RSV vaccine development, especially with three approved candidates, the development of vaccines for HMPV remains an unmet medical need. Ongoing research in combination vaccines holds promise for broader protection against multiple respiratory viruses in the future.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.